The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
MeSH Review


Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Presbycusis


Psychiatry related information on Presbycusis

  • This article suggests a working definition of "classic presbycusis," which may be defined as a syndrome involving (1) a bilaterally symmetric sensorineural hearing loss, (2) absent or partial recruitment, (3) negative noise history, and (4) poorer speech discrimination than indicated by pure tones (phonemic regression) [4].

High impact information on Presbycusis


Chemical compound and disease context of Presbycusis

  • Metabolic presbycusis: differential changes in auditory brainstem and otoacoustic emission responses with chronic furosemide application in the gerbil [10].
  • Given the major role glycine plays in normal CN function, changes in glycine-receptor activity may contribute to central presbycusis [11].
  • A higher synthesis of DA in aged animals could support these findings, which could indicate some kind of compensatory mechanism related to presbycusis [12].

Biological context of Presbycusis


Gene context of Presbycusis

  • RESULTS: Gene polymorphisms at GSTM1, GSTT1, and GSTP1 in subjects with presbycusis were not significantly different than in the controls (p > 0.05) [14].
  • The caused by presbycusis, combined with a recurrent conductive loss in the speech frequencies rather than cochlear otosclerosis [15].
  • Presbycusis: the aging ear. Part I [16].
  • A significantly decreased expression of the beta2 nAChR subunit in SGNs was found specifically in mice susceptible to presbycusis [17].
  • This study examines the effects of high intensity noise exposure (0.5-40 kHz noise at 108 dB SPL for 45 min) on young and old normal (CBA/Ca) mice and young premature presbycusis (C57BL/6) mice [18].


  1. Ear diseases in elderly hospital patients in Nigeria. Ologe, F.E., Segun-Busari, S., Abdulraheem, I.S., Afolabi, A.O. J. Gerontol. A Biol. Sci. Med. Sci. (2005) [Pubmed]
  2. The clinical assessment of industrial and hearing loss - a case report and discussion. Alberti, P.W. The Journal of otolaryngology. (1982) [Pubmed]
  3. Further observations on the role of the MHC genes and certain hearing disorders. Bernstein, J.M., Shanahan, T.C., Schaffer, F.M. Acta Otolaryngol. (1996) [Pubmed]
  4. Presbycusis: the need for a clinical definition. Pearlman, R.C. The American journal of otology. (1982) [Pubmed]
  5. Sensorineural hearing loss: a reversible effect of valproic acid. Armon, C., Brown, E., Carwile, S., Miller, P., Shin, C. Neurology (1990) [Pubmed]
  6. Age-related changes in GABA(A) receptor subunit composition and function in rat auditory system. Caspary, D.M., Holder, T.M., Hughes, L.F., Milbrandt, J.C., McKernan, R.M., Naritoku, D.K. Neuroscience (1999) [Pubmed]
  7. Aging and presbycusis: effects on 2-deoxy-D-glucose uptake in the mouse auditory brain stem in quiet. Willott, J.F., Hunter, K.P., Coleman, J.R. Exp. Neurol. (1988) [Pubmed]
  8. Correlation between accelerated presbycusis and decreased immune functions. Iwai, H., Lee, S., Inaba, M., Sugiura, K., Baba, S., Tomoda, K., Yamashita, T., Ikehara, S. Exp. Gerontol. (2003) [Pubmed]
  9. Higher serum aldosterone correlates with lower hearing thresholds: a possible protective hormone against presbycusis. Tadros, S.F., Frisina, S.T., Mapes, F., Frisina, D.R., Frisina, R.D. Hear. Res. (2005) [Pubmed]
  10. Metabolic presbycusis: differential changes in auditory brainstem and otoacoustic emission responses with chronic furosemide application in the gerbil. Mills, D.M., Schmiedt, R.A. J. Assoc. Res. Otolaryngol. (2004) [Pubmed]
  11. Age-related glycine receptor subunit changes in the cochlear nucleus of Fischer-344 rats. Krenning, J., Hughes, L.F., Caspary, D.M., Helfert, R.H. Laryngoscope (1998) [Pubmed]
  12. Effects of aging on cochlear monoamine turnover. Vicente-Torres, M.A., Dávila, D., Muñoz, E., Gil-Loyzaga, P. Adv. Otorhinolaryngol. (2002) [Pubmed]
  13. Genetics of hearing loss: Allelism and modifier genes produce a phenotypic continuum. McHugh, R.K., Friedman, R.A. The anatomical record. Part A, Discoveries in molecular, cellular, and evolutionary biology. (2006) [Pubmed]
  14. Glutathione S-transferase gene polymorphisms in presbycusis. Ateş, N.A., Unal, M., Tamer, L., Derici, E., Karakaş, S., Ercan, B., Pata, Y.S., Akbaş, Y., Vayisoğlu, Y., Camdeviren, H. Otol. Neurotol. (2005) [Pubmed]
  15. Stapedectomy: long-term hearing results. Langman, A.W., Jackler, R.K., Sooy, F.A. Laryngoscope (1991) [Pubmed]
  16. Presbycusis: the aging ear. Part I. Gilad, O., Glorig, A. Journal of the American Auditory Society. (1979) [Pubmed]
  17. Requirement of nicotinic acetylcholine receptor subunit beta2 in the maintenance of spiral ganglion neurons during aging. Bao, J., Lei, D., Du, Y., Ohlemiller, K.K., Beaudet, A.L., Role, L.W. J. Neurosci. (2005) [Pubmed]
  18. Interactive effects of aging with noise induced hearing loss. Miller, J.M., Dolan, D.F., Raphael, Y., Altschuler, R.A. Scandinavian audiology. Supplementum. (1998) [Pubmed]
WikiGenes - Universities