The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Regulation of extracellular-signal regulated kinase and c-Jun N-terminal kinase by G-protein-linked muscarinic acetylcholine receptors.

Extracellular signal-regulated kinases (ERKs) and c-Jun N-terminal kinases (JNKs, or stress-activated protein kinases) are activated by diverse extracellular signals and mediate a variety of cellular responses, including mitogenesis, differentiation, hypertrophy, inflammatory reactions and apoptosis. We have examined the involvement of Ca2+ and protein kinase C (PKC) in ERK and JNK activation by the human G-protein-coupled m2 and m3 muscarinic acetylcholine receptors (mAChR) expressed in Chinese hamster ovary (CHO) cells. We show that the Ca2+-mobilizing m3 AChR is efficiently coupled to JNK and ERK activation, whereas the m2 AChR activates ERK but not JNK. Activation of JNK in CHO-m3 cells by the agonist methacholine (MCh) was delayed in onset and more sustained relative to that of ERK in either CHO-m2 or CHO-m3 cells. The EC50 values for MCh-induced ERK activation in both cell types were essentially identical and similar to that for JNK activation in CHO-m3 cells, suggesting little amplification of the response. Agonist-stimulated Ins(1,4,5)P3 accumulation in CHO-m3 cells was insensitive to pertussis toxin (PTX), consistent with a Gq/phosphoinositide-specific phospholipase C-beta mediated pathway, whereas a significant component of ERK and JNK activation in CHO-m3 cells was PTX-sensitive, indicating Gi/o involvement. Using manipulations that prevent receptor-mediated extracellular Ca2+ influx and intracellular Ca2+-store release, we also show that ERK activation by m2 and m3 receptors is Ca2+-independent. In contrast, a significant component (>50%) of JNK activation mediated by the m3 AChR was dependent on Ca2+, mainly derived from extracellular influx. PKC inhibition and down-regulation studies suggested that JNK activation was negatively regulated by PKC. Conversely, ERK activation by both m2 and m3 AChRs required PKC, suggesting a novel mechanism for PKC activation by PTX-sensitive m2 AChRs. In summary, mAChRs activate JNK and ERK via divergent mechanisms involving either Ca2+ or PKC respectively.[1]


WikiGenes - Universities