The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Tumor necrosis factor-alpha and CD95 ligation suppress erythropoiesis in Fanconi anemia C gene knockout mice.

Fanconi anemia (FA) is a genetic syndrome predisposing to hematopoietic failure. Little is known about the pathophysiology of FA, except that tumor necrosis factor-alpha ( TNF-alpha) is overexpressed in patients. FA group C (Fac) gene knockout mice have been developed in order to model the human disease, but the mice do not spontaneously exhibit aplasia. To investigate secondary influences on hematopoiesis in the Fac-null mice, we studied the sensitivity of hematopoietic progenitor cells (HPC) to death receptor triggering by TNF-alpha and Fas receptor ( CD95) ligation. Previously we had found that overexpression of a human FAC transgene protects hematopoietic progenitors from Fas-mediated apoptosis (Wang et al., 1998, Cancer Res 58:3538-3541). In the present experiments with Fac-null mice, growth of erythroid burst-forming units (BFU-E) was significantly inhibited by TNF-alpha and CD95 ligation. Flow cytometric analysis revealed that CD95 was induced more readily in the Fac-null CD34+ cell fraction. Apoptosis induced by TNF-alpha alone or with CD95 ligation also occurred more frequently in null mouse HPC. We then bred null mice against transgenic mice overexpressing TNF-alpha (at serum levels in the range of 100 pg/ml). Resultant Fac-null mice that overexpressed TNF-alpha not only yielded decreased numbers of BFU-E but also expressed higher levels of CD95 in the CD34+ fraction. We conclude that mutation in the Fac protein induces heightened sensitivity to TNF-alpha and Fas receptor ligation, results that may explain the mechanism of anemia in FA-C patients.[1]

References

  1. Tumor necrosis factor-alpha and CD95 ligation suppress erythropoiesis in Fanconi anemia C gene knockout mice. Otsuki, T., Nagakura, S., Wang, J., Bloom, M., Grompe, M., Liu, J.M. J. Cell. Physiol. (1999) [Pubmed]
 
WikiGenes - Universities