The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Inhibitory effect of a growth hormone receptor antagonist (G120K-PEG) on renal enlargement, glomerular hypertrophy, and urinary albumin excretion in experimental diabetes in mice.

Growth hormone (GH) and IGFs have a long and distinguished history in diabetes, with possible participation in the development of renal complications. To investigate the effect of a newly developed GH receptor (GHR) antagonist (G120K-PEG) on renal/glomerular hypertrophy and urinary albumin excretion (UAE), streptozotocin-induced diabetic and nondiabetic mice were injected with G120K-PEG every 2nd day for 28 days. Placebo-treated diabetic and nondiabetic animals were used as reference groups. Placebo-treated diabetic animals were characterized by growth retardation, hyperphagia, hyperglycemia, increased serum GH levels, reduced serum IGF-I, IGF-binding protein (IGFBP)-3, and liver IGF-I levels, increased kidney IGF-I, renal/glomerular hypertrophy, and increased UAE when compared with nondiabetic animals. No differences were seen between the two diabetic groups with respect to body weight, food intake, blood glucose, serum GH, IGF-I, and IGFBP-3 levels or hepatic IGF-I levels. Kidney IGF-I, kidney weight, and glomerular volume were normalized, while the rise in UAE was partially attenuated in the G120K-PEG-treated diabetic animals. No effect of G120K-PEG treatment on any of the parameters mentioned above was seen in nondiabetic animals. In conclusion, administration of a GHR antagonist in diabetic mice has renal effects without affecting metabolic control and circulating levels of GH, IGF-I, or IGFBP-3, thus indicating that the effect of G120K-PEG may be mediated through a direct inhibitory effect on renal IGF-I through the renal GHR. The present study suggests that specific GHR blockade may present a new concept in the treatment of diabetic kidney disease.[1]

References

 
WikiGenes - Universities