The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The fetal cleft palate: II. Scarless healing after in utero repair of a congenital model.

The role of fetal surgery in the treatment of non-life-threatening congenital anomalies remains a source of much debate. Before such undertakings can be justified, models must be established that closely resemble the respective human anomalies, and the feasibility and safety of these in utero procedures must be demonstrated. The authors recently described and characterized a congenital model of cleft palate in the goat. The present work demonstrates the methodology they developed to successfully repair these congenital cleft palates in utero, and it shows palatal healing and development after repair. A surgically created cleft model was developed for comparative purposes. Palatal shelf closure normally occurs at approximately day 38 of gestation in the caprine species. Six pregnant goats were gavaged twice daily during gestational days 32 to 41 (term, 145 days) with a plant slurry of Nicotiana glauca containing the piperidine alkaloid anabasine; the 12 fetuses had complete congenital clefts of the secondary palate. Repair of the congenital clefts was performed at 85 days of gestation using a modified von Langenbeck technique employing lateral relaxing incisions with elevation and midline approximation of full-thickness, bilateral, mucoperiosteal palatal flaps followed by single-layer closure. Six congenitally clefted fetuses underwent in utero repair, six remained as unrepaired controls. Twelve normal fetuses underwent surgical cleft creation by excision of a 20 x 3 mm full-thickness midline section of the secondary palate extending from the alveolus to the uvula, at 85 days of gestation. Six surgically clefted fetuses underwent concurrent repair of the cleft at that time; six clefted fetuses remained as unrepaired controls. At 2 weeks of age, no congenitally or surgically created clefts repaired in utero demonstrated gross or histologic evidence of scar formation. A slight indentation at the site of repair was the only remaining evidence of a cleft. At 6 months of age, normal palatal architecture, including that of mucosal, muscular, and glandular elements, was seen grossly and histologically. Cross-section through the mid-portion of the repaired congenitally clefted palates demonstrated reconstitution of a bilaminar palate, with distinct oral and nasal mucosal layers, after single-layer repair. In utero cleft palate repair is technically feasible and results in scarless healing of the mucoperiosteum and velum. The present work represents the first in utero repair of a congenital cleft palate model in any species. The use of a congenital cleft palate model that can be consistently reproduced with high predictability and little variation represents the ideal experimental situation. It provides an opportunity to manipulate specific variables, assess the influence of each change on the outcome and, subsequently, extrapolate such findings to the clinical arena with a greater degree of relevance.[1]

References

  1. The fetal cleft palate: II. Scarless healing after in utero repair of a congenital model. Weinzweig, J., Panter, K.E., Pantaloni, M., Spangenberger, A., Harper, J.S., Lui, F., James, L.F., Edstrom, L.E. Plast. Reconstr. Surg. (1999) [Pubmed]
 
WikiGenes - Universities