The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Cleft Palate

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Cleft Palate

 

Psychiatry related information on Cleft Palate

 

High impact information on Cleft Palate

 

Chemical compound and disease context of Cleft Palate

 

Biological context of Cleft Palate

 

Anatomical context of Cleft Palate

  • Moreover, Tbx1-/- mice displayed a wide range of developmental anomalies encompassing almost all of the common DGS/VCFS features, including hypoplasia of the thymus and parathyroid glands, cardiac outflow tract abnormalities, abnormal facial structures, abnormal vertebrae and cleft palate [22].
  • They lack whiskers and lower incisors and have defects in their secondary palates, including cleft palate, demonstrating that activin-beta A must have a role during craniofacial development [23].
  • Less frequent findings include lacrimal-duct atresia, nail dysplasia, hypohydrosis, hypodontia, and cleft palate with or without bifid uvula [24].
  • The opposite trends for severity of syndactyly and cleft palate in relation to the two mutations may relate to the varying patterns of temporal and tissue-specific expression of different fibroblast growth factors, the ligands for FGFR2 [3].
  • Mice heterozygous for a null mutation in Tbx1 have mild anomalies, whereas homozygous Tbx1 mutants die at birth with severe defects in the derivatives of the pharyngeal apparatus, including cleft palate, thymus gland aplasia and cardiac outflow tract malformations [25].
 

Gene context of Cleft Palate

  • Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate [26].
  • This interval, closely linked and distal to p, and bracketed by the genes encoding the alpha 5 and beta 3 subunits of the type A gamma-aminobutyric acid receptor (Gabra5 and Gabrb3, respectively), contains a gene(s) (cp1; cleft palate 1) necessary for normal palate development [27].
  • The Sox9(+/-) mice died perinatally with cleft palate, as well as hypoplasia and bending of many skeletal structures derived from cartilage precursors [28].
  • Identification of SATB2 as the cleft palate gene on 2q32-q33 [18].
  • Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis [19].
 

Analytical, diagnostic and therapeutic context of Cleft Palate

References

  1. Lack of relation of oral clefts to diazepam use during pregnancy. Rosenberg, L., Mitchell, A.A., Parsells, J.L., Pashayan, H., Louik, C., Shapiro, S. N. Engl. J. Med. (1983) [Pubmed]
  2. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Loeys, B.L., Chen, J., Neptune, E.R., Judge, D.P., Podowski, M., Holm, T., Meyers, J., Leitch, C.C., Katsanis, N., Sharifi, N., Xu, F.L., Myers, L.A., Spevak, P.J., Cameron, D.E., De Backer, J., Hellemans, J., Chen, Y., Davis, E.C., Webb, C.L., Kress, W., Coucke, P., Rifkin, D.B., De Paepe, A.M., Dietz, H.C. Nat. Genet. (2005) [Pubmed]
  3. Differential effects of FGFR2 mutations on syndactyly and cleft palate in Apert syndrome. Slaney, S.F., Oldridge, M., Hurst, J.A., Moriss-Kay, G.M., Hall, C.M., Poole, M.D., Wilkie, A.O. Am. J. Hum. Genet. (1996) [Pubmed]
  4. Mice deficient in the candidate tumor suppressor gene Hic1 exhibit developmental defects of structures affected in the Miller-Dieker syndrome. Carter, M.G., Johns, M.A., Zeng, X., Zhou, L., Zink, M.C., Mankowski, J.L., Donovan, D.M., Baylin, S.B. Hum. Mol. Genet. (2000) [Pubmed]
  5. Early speech and language development in children with velocardiofacial syndrome. Scherer, N.J., D'Antonio, L.L., Kalbfleisch, J.H. Am. J. Med. Genet. (1999) [Pubmed]
  6. All-trans-retinoic acid-induced variant patterns of palatal rugae in Crj:SD rat fetuses and their potential as indicators for teratogenicity. Ikemi, N., Kawata, M., Yasuda, M. Reprod. Toxicol. (1995) [Pubmed]
  7. The relation between maternal restraint and food deprivation, plasma corticosterone, and induction of cleft palate in the offspring of mice. Barlow, S.M., McElhatton, P.R., Sullivan, F.M. Teratology (1975) [Pubmed]
  8. The T-box transcription factor gene TBX22 is mutated in X-linked cleft palate and ankyloglossia. Braybrook, C., Doudney, K., Marçano, A.C., Arnason, A., Bjornsson, A., Patton, M.A., Goodfellow, P.J., Moore, G.E., Stanier, P. Nat. Genet. (2001) [Pubmed]
  9. Mutation of PVRL1 is associated with sporadic, non-syndromic cleft lip/palate in northern Venezuela. Sözen, M.A., Suzuki, K., Tolarova, M.M., Bustos, T., Fernández Iglesias, J.E., Spritz, R.A. Nat. Genet. (2001) [Pubmed]
  10. Epidermal growth factor receptor function is necessary for normal craniofacial development and palate closure. Miettinen, P.J., Chin, J.R., Shum, L., Slavkin, H.C., Shuler, C.F., Derynck, R., Werb, Z. Nat. Genet. (1999) [Pubmed]
  11. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Kaartinen, V., Voncken, J.W., Shuler, C., Warburton, D., Bu, D., Heisterkamp, N., Groffen, J. Nat. Genet. (1995) [Pubmed]
  12. Deficiency of the beta 3 subunit of the type A gamma-aminobutyric acid receptor causes cleft palate in mice. Culiat, C.T., Stubbs, L.J., Woychik, R.P., Russell, L.B., Johnson, D.K., Rinchik, E.M. Nat. Genet. (1995) [Pubmed]
  13. Genes in mice that affect susceptibility to cortisone-induced cleft palate are closely linked to Ir genes on chromosomes 2 and 17. Gasser, D.L., Mele, L., Lees, D.D., Goldman, A.S. Proc. Natl. Acad. Sci. U.S.A. (1981) [Pubmed]
  14. Genome scan for teratogen-induced clefting susceptibility loci in the mouse: evidence of both allelic and locus heterogeneity distinguishing cleft lip and cleft palate. Diehl, S.R., Erickson, R.P. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  15. Cleft lip with or without cleft palate: associations with transforming growth factor alpha and retinoic acid receptor loci. Chenevix-Trench, G., Jones, K., Green, A.C., Duffy, D.L., Martin, N.G. Am. J. Hum. Genet. (1992) [Pubmed]
  16. A novel loss-of-function mutation in TTF-2 is associated with congenital hypothyroidism, thyroid agenesis and cleft palate. Castanet, M., Park, S.M., Smith, A., Bost, M., Léger, J., Lyonnet, S., Pelet, A., Czernichow, P., Chatterjee, K., Polak, M. Hum. Mol. Genet. (2002) [Pubmed]
  17. Lathosterolosis: an inborn error of human and murine cholesterol synthesis due to lathosterol 5-desaturase deficiency. Krakowiak, P.A., Wassif, C.A., Kratz, L., Cozma, D., Kovárová, M., Harris, G., Grinberg, A., Yang, Y., Hunter, A.G., Tsokos, M., Kelley, R.I., Porter, F.D. Hum. Mol. Genet. (2003) [Pubmed]
  18. Identification of SATB2 as the cleft palate gene on 2q32-q33. FitzPatrick, D.R., Carr, I.M., McLaren, L., Leek, J.P., Wightman, P., Williamson, K., Gautier, P., McGill, N., Hayward, C., Firth, H., Markham, A.F., Fantes, J.A., Bonthron, D.T. Hum. Mol. Genet. (2003) [Pubmed]
  19. Rescue of cleft palate in Msx1-deficient mice by transgenic Bmp4 reveals a network of BMP and Shh signaling in the regulation of mammalian palatogenesis. Zhang, Z., Song, Y., Zhao, X., Zhang, X., Fermin, C., Chen, Y. Development (2002) [Pubmed]
  20. A preliminary gene map for the Van der Woude syndrome critical region derived from 900 kb of genomic sequence at 1q32-q41. Schutte, B.C., Bjork, B.C., Coppage, K.B., Malik, M.I., Gregory, S.G., Scott, D.J., Brentzell, L.M., Watanabe, Y., Dixon, M.J., Murray, J.C. Genome Res. (2000) [Pubmed]
  21. An HDR (hypoparathyroidism, deafness, renal dysplasia) syndrome locus maps distal to the DiGeorge syndrome region on 10p13/14. Lichtner, P., König, R., Hasegawa, T., Van Esch, H., Meitinger, T., Schuffenhauer, S. J. Med. Genet. (2000) [Pubmed]
  22. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbx1. Jerome, L.A., Papaioannou, V.E. Nat. Genet. (2001) [Pubmed]
  23. Functional analysis of activins during mammalian development. Matzuk, M.M., Kumar, T.R., Vassalli, A., Bickenbach, J.R., Roop, D.R., Jaenisch, R., Bradley, A. Nature (1995) [Pubmed]
  24. Limb mammary syndrome: a new genetic disorder with mammary hypoplasia, ectrodactyly, and other Hand/Foot anomalies maps to human chromosome 3q27. van Bokhoven, H., Jung, M., Smits, A.P., van Beersum, S., Rüschendorf, F., van Steensel, M., Veenstra, M., Tuerlings, J.H., Mariman, E.C., Brunner, H.G., Wienker, T.F., Reis, A., Ropers, H.H., Hamel, B.C. Am. J. Hum. Genet. (1999) [Pubmed]
  25. Inactivation of Tbx1 in the pharyngeal endoderm results in 22q11DS malformations. Arnold, J.S., Werling, U., Braunstein, E.M., Liao, J., Nowotschin, S., Edelmann, W., Hebert, J.M., Morrow, B.E. Development (2006) [Pubmed]
  26. Disruption of Fgf10/Fgfr2b-coordinated epithelial-mesenchymal interactions causes cleft palate. Rice, R., Spencer-Dene, B., Connor, E.C., Gritli-Linde, A., McMahon, A.P., Dickson, C., Thesleff, I., Rice, D.P. J. Clin. Invest. (2004) [Pubmed]
  27. Concordance between isolated cleft palate in mice and alterations within a region including the gene encoding the beta 3 subunit of the type A gamma-aminobutyric acid receptor. Culiat, C.T., Stubbs, L., Nicholls, R.D., Montgomery, C.S., Russell, L.B., Johnson, D.K., Rinchik, E.M. Proc. Natl. Acad. Sci. U.S.A. (1993) [Pubmed]
  28. Haploinsufficiency of Sox9 results in defective cartilage primordia and premature skeletal mineralization. Bi, W., Huang, W., Whitworth, D.J., Deng, J.M., Zhang, Z., Behringer, R.R., de Crombrugghe, B. Proc. Natl. Acad. Sci. U.S.A. (2001) [Pubmed]
  29. Mice devoid of gamma-aminobutyrate type A receptor beta3 subunit have epilepsy, cleft palate, and hypersensitive behavior. Homanics, G.E., DeLorey, T.M., Firestone, L.L., Quinlan, J.J., Handforth, A., Harrison, N.L., Krasowski, M.D., Rick, C.E., Korpi, E.R., Mäkelä, R., Brilliant, M.H., Hagiwara, N., Ferguson, C., Snyder, K., Olsen, R.W. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  30. Genetics of cortisone-induced cleft palate in the mouse-embryonic and maternal effects. Biddle, F.G., Fraser, F.C. Genetics (1976) [Pubmed]
  31. Is there a no-effect dose for corticosteroid-induced cleft palate? The contribution of endogenous corticosterone to the incidence of cleft palate in mice. Fawcett, L.B., Buck, S.J., Beckman, D.A., Brent, R.L. Pediatr. Res. (1996) [Pubmed]
  32. Diphenylhydantoin inhibits cortisol-induced lysis of thymocytes. MacKinney, A.A., Knobeloch, L. Proc. Soc. Exp. Biol. Med. (1986) [Pubmed]
  33. Pallister-Killian and Fryns syndromes: nosology. McPherson, E.W., Ketterer, D.M., Salsburey, D.J. Am. J. Med. Genet. (1993) [Pubmed]
 
WikiGenes - Universities