The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Localized Derepression on the Human Inactive X Chromosone in Mouse-Human Cell Hybrids.

Evidence for derepression of the gene for hypoxanthine phosphoribosyltransferase (HPRT; IMP: pyrophosphate phosphoribosyltransferase, EC 2.4.2.8) on the human inactive X chromosome was obtained in hybrids of mouse and human cells. The mouse cells lacked HPRT and were also deficient in adenine phosphoribosyltransferase (APRT; AMP: pyrophosphate phosphoribosyltransferase; EC2.4.2.7). The human female fibroblasts were HPRT-deficient as a consequence of a mutation on the active X but contained a normal HPRT gene on the inactive X. The two human X chromosomes were further distinguished by differences in morphology: the inactive X was morphologically normal while the active X included most of the long arm of autosome no. 1 translocated to the distal end of the X long arm. Forty-one hybrid clones were first isolated by selection for the presence of APRT; when these clones were selected for HPRT, six of them yielded derivatives having human HPRT with incidences of about 1 in 10-6 APRT-selected hybrid cells. The HPRT-positive derivatives contained a normal-appearing X chromosome indistinguishable from the inactive X of the parental human fibroblasts. The active X with the translocation was not found in any of the HPRT-positive hybrid cells. Human phosphoglycerokinase (ATP:3-phospho-D-glycerate 1-phosphotransferase. EC 2.7.2.3) and glucose-6-phosphate dehydrogenase (D-glucose 6-phosphate: NADP 1-oxidoreductase, EC 1.1.1.49), which are specified by X-chromosomal loci, were not detected in the hybrids expressing HPRT even though they contained an apparently intact X chromosome. The observations are most simply explained by the infrequent, stable derepression of inactive X chromosome segments that include the HPRT locus but not the phosphoglycerokinase and glucose-6-phosphate dehydrogenase loci.[1]

References

  1. Localized Derepression on the Human Inactive X Chromosone in Mouse-Human Cell Hybrids. Kahan, B., DeMars, R. Proc. Natl. Acad. Sci. U.S.A. (1975) [Pubmed]
 
WikiGenes - Universities