Role of the TATA binding protein-transcription factor IIB interaction in supporting basal and activated transcription in plant cells.
The TATA binding protein ( TBP) and transcription factor IIB (TFIIB) play crucial roles in transcription of class II genes. The requirement for TBP-TFIIB interactions was evaluated in maize cells by introducing mutations into the Arabidopsis TBP (AtTBP2) within the C-terminal stirrup. Protein binding experiments indicated that amino acid residues E-144 and E-146 of AtTBP2 are both essential for TFIIB binding in vitro. Activation domains derived from herpes simplex viral protein VP16, the Drosophila fushi tarazu glutamine-rich domain (ftzQ), and yeast Gal4 were tested in transient assays. TBP-TFIIB interactions were dispensable for basal transcription but were required for activated transcription. In general, activated transcription was more severely inhibited by TBP mutation E-146R than by mutation E-144R. However, these TBP mutations had little effect on activity of the full-length cauliflower mosaic virus 35S and maize ubiquitin promoters, thus demonstrating that strong TBP-TFIIB contacts are not always required for transcription driven by complex promoters.[1]References
- Role of the TATA binding protein-transcription factor IIB interaction in supporting basal and activated transcription in plant cells. Pan, S., Czarnecka-Verner, E., Gurley, W.B. Plant Cell (2000) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg