The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Involvement of thioredoxin peroxidase type II (Ahp1p) of Saccharomyces cerevisiae in Mn2+ homeostasis.

To identify new proteins involved in Mn2+ homeostasis, we isolated Mn(2+)-resistant mutants of Saccharomyces cerevisiae starting from a calcineurin-deficient, Mn2+ hypersensitive strain (delta cmp1 delta cmp2). The mutations were found to lie in the PMR1 gene, known to encode a "P-type" Ca(2+)-ATPase that transports Ca2+ and Mn2+ from the cytosol to the Golgi apparatus. A second gene, AHP1, was cloned as a suppressor of the Mn2+ tolerance of a delta cmp1 delta cmp2 pmr1 mutant. Ahp1p was recently described as a thioredoxin peroxidase type II, an antioxidant protein with alkyl hydroperoxide defense properties in yeast. AHP1 disruption in strain W303 decreased tolerance to Mn2+ and H2O2. We found that a GFP-Ahp1p fusion construct was in the cytosol when cells were grown in glucose, and in the mitochondria when cells were grown in oleate. Based on Mn2+ transport data, we concluded that Ahp1p is involved in cellular Mn2+ homeostasis in trafficking of Mn2+ from cytosol to mitochondria and from cytosol for export across the plasma membrane.[1]


  1. Involvement of thioredoxin peroxidase type II (Ahp1p) of Saccharomyces cerevisiae in Mn2+ homeostasis. Farcasanu, I.C., Hirata, D., Tsuchiya, E., Mizuta, K., Miyakawa, T. Biosci. Biotechnol. Biochem. (1999) [Pubmed]
WikiGenes - Universities