The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Cysteine-rich protein 2, a novel substrate for cGMP kinase I in enteric neurons and intestinal smooth muscle.

Nitric oxide/cGMP/cGMP kinase I (cGKI) signaling causes relaxation of intestinal smooth muscle. In the gastrointestinal tract substrates of cGKI have not been identified yet. In the present study a protein interacting with cGKIbeta has been isolated from a rat intestinal cDNA library using the yeast two-hybrid system. The protein was identified as cysteine-rich protein 2 ( CRP2), recently cloned from rat brain (Okano, I., Yamamoto, T., Kaji, A., Kimura, T., Mizuno, K., and Nakamura, T. (1993) FEBS Lett. 333, 51-55). Recombinant CRP2 is specifically phosphorylated by cGKs but not by cAMP kinase in vitro. Co-transfection of CRP2 and cGKIbeta into COS cells confirmed the phosphorylation of CRP2 in vivo. Cyclic GMP kinase I phosphorylated CRP2 at Ser-104, because the mutation to Ala completely prevented the in vivo phosphorylation. Immunohistochemical analysis using confocal laser scan microscopy showed a co-localization of CRP2 and cGKI in the inner part of the circular muscle layer, in the muscularis mucosae, and in specific neurons of the myenteric and submucosal plexus. The co-localization together with the specific phosphorylation of CRP2 by cGKI in vitro and in vivo suggests that CRP2 is a novel substrate of cGKI in neurons and smooth muscle of the small intestine.[1]

References

  1. Cysteine-rich protein 2, a novel substrate for cGMP kinase I in enteric neurons and intestinal smooth muscle. Huber, A., Neuhuber, W.L., Klugbauer, N., Ruth, P., Allescher, H.D. J. Biol. Chem. (2000) [Pubmed]
 
WikiGenes - Universities