The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Intracranial self-stimulation increases differentially in vivo hydroxylation of tyrosine but similarly in vivo hydroxylation of tryptophan in rat medial prefrontal cortex, nucleus accumbens and striatum.

We have examined using microdialysis the effect of intracranial self-stimulation (ICSS) on the in vivo hydroxylation rate of tyrosine and tryptophan in the medial prefrontal cortex (mPFC), nucleus accumbens (NAC) and striatum (STR). A decarboxylase inhibitor NSD-1015 was included in the perfusate, which enabled the simultaneous measurement of 3,4-dihydroxyphenylalanine (DOPA) and 5-hydroxytryptophan (5-HTP) as an index of the in vivo hydroxylation level of tyrosine and tryptophan. When rats were exposed to 1 h of ICSS at the medial forebrain bundle (MFB), their extracellular levels of DOPA significantly increased in the mPFC, NAC and STR, but with a different magnitude and time course. The same stimulation produced a delayed increase in extracellular 5-HTP, compared to DOPA, in these brain regions. The profile of 5-HTP response demonstrated no apparent difference among the regions. These findings indicate that ICSS of the MFB can increase differentially the in vivo hydroxylation of tyrosine but similarly the in vivo hydroxylation of tryptophan in the mPFC, NAC and STR.[1]

References

 
WikiGenes - Universities