The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Medial Forebrain Bundle

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Medial Forebrain Bundle

 

Psychiatry related information on Medial Forebrain Bundle

 

High impact information on Medial Forebrain Bundle

 

Chemical compound and disease context of Medial Forebrain Bundle

 

Biological context of Medial Forebrain Bundle

 

Anatomical context of Medial Forebrain Bundle

 

Associations of Medial Forebrain Bundle with chemical compounds

 

Gene context of Medial Forebrain Bundle

 

Analytical, diagnostic and therapeutic context of Medial Forebrain Bundle

References

  1. Effects of hyperprolactinemia on plasma prolactin and glucose and on local cerebral glucose utilization. Selmanoff, M., Walovitch, R.C., Walker, G.E., London, E.D. J. Neurochem. (1987) [Pubmed]
  2. Dinapsoline: characterization of a D1 dopamine receptor agonist in a rat model of Parkinson's disease. Gulwadi, A.G., Korpinen, C.D., Mailman, R.B., Nichols, D.E., Sit, S.Y., Taber, M.T. J. Pharmacol. Exp. Ther. (2001) [Pubmed]
  3. Inhibition in corticotrophin and corticosterone secretion following photic stimulation in rats with 6-hydroxydopamine injection into the medial forebrain bundle. Feldman, S., Melamed, E., Conforti, N., Weidenfeld, J. J. Neurosci. Res. (1984) [Pubmed]
  4. Hypothalamic knife cuts attenuate maintenance of deoxycorticosterone acetate-salt induced hypertension. Bealer, S.L. Brain Res. (1984) [Pubmed]
  5. Deprenyl enhances the striatal neuronal damage produced by quinolinic acid. de Pablos, R.M., Herrera, A.J., Tomás-Camardiel, M., Machado, A., Cano, J. Brain Res. Mol. Brain Res. (2005) [Pubmed]
  6. Two substrates for medial forebrain bundle self-stimulation: myelinated axons and dopamine axons. Yeomans, J.S. Neuroscience and biobehavioral reviews. (1989) [Pubmed]
  7. Effect of bilateral 6-hydroxydopamine lesions of the medial forebrain bundle on reaction time. Smith, A.D., Amalric, M., Koob, G.F., Zigmond, M.J. Neuropsychopharmacology (2002) [Pubmed]
  8. Intracerebral administration of 2,4-diclorophenoxyacetic acid induces behavioral and neurochemical alterations in the rat brain. Bortolozzi, A., Evangelista de Duffard, A.M., Dajas, F., Duffard, R., Silveira, R. Neurotoxicology (2001) [Pubmed]
  9. Addictive drugs and brain stimulation reward. Wise, R.A. Annu. Rev. Neurosci. (1996) [Pubmed]
  10. Localization of nigral dopamine-sensitive adenylate cyclase on neurons originating from the corpus striatum. Spano, P.F., Trabucchi, M., Di Chiara, G. Science (1977) [Pubmed]
  11. Defect of tyrosine hydroxylase-immunoreactive neurons in the brains of mice lacking the transcription factor Pax6. Vitalis, T., Cases, O., Engelkamp, D., Verney, C., Price, D.J. J. Neurosci. (2000) [Pubmed]
  12. GDNF reduces drug-induced rotational behavior after medial forebrain bundle transection by a mechanism not involving striatal dopamine. Tseng, J.L., Baetge, E.E., Zurn, A.D., Aebischer, P. J. Neurosci. (1997) [Pubmed]
  13. The dopamine transporter: immunochemical characterization and localization in brain. Ciliax, B.J., Heilman, C., Demchyshyn, L.L., Pristupa, Z.B., Ince, E., Hersch, S.M., Niznik, H.B., Levey, A.I. J. Neurosci. (1995) [Pubmed]
  14. The effects of ethanol upon threshold and response rate for self-stimulation. Carlson, R.H., Lydic, R. Psychopharmacology (Berl.) (1976) [Pubmed]
  15. Brain stem self-stimulation attenuated by lesions of medial forebrain bundle but not by lesions of locus coeruleus or the caudal ventral norepinephrine bundle. Clavier, R.M., Routtenberg, A. Brain Res. (1976) [Pubmed]
  16. 4-Ethoxyamphetamine: effects on intracranial self-stimulation and in vitro uptake and release of 3H-dopamine and 3H-serotonin in the brains of rats. Hegadoren, K.M., Greenshaw, A.J., Baker, G.B., Martin-Iverson, M.T., Lodge, B., Soin, S. Journal of psychiatry & neuroscience : JPN. (1994) [Pubmed]
  17. Effect of cholecystokinin on self-stimulation behavior in rats. Fekete, M., Rentzsch, A., Schwarzberg, H., Telegdy, G. Eur. J. Pharmacol. (1983) [Pubmed]
  18. Specific modulation of brain stimulation reward by haloperidol. Esposito, R.U., Faulkner, W., Kornetsky, C. Pharmacol. Biochem. Behav. (1979) [Pubmed]
  19. Localization of atrial natriuretic factor (ANF) binding sites in the central nervous system of the frog. Tong, Y., Netchitaïlo, P., Leboulenger, F., Vaudry, H., Pelletier, G. J. Comp. Neurol. (1989) [Pubmed]
  20. Upregulation of BDNF mRNA and trkB mRNA in the nigrostriatal system and in the lesion site following unilateral transection of the medial forebrain bundle. Venero, J.L., Vizuete, M.L., Revuelta, M., Vargas, C., Cano, J., Machado, A. Exp. Neurol. (2000) [Pubmed]
  21. Ascending projections of the locus coeruleus in the rat. I. Axonal transport in central noradrenaline neurons. Jones, B.E., Halaris, A.E., McIlhany, M., Moore, R.Y. Brain Res. (1977) [Pubmed]
  22. Microglial phagocytosis of dopamine neurons at early phases of apoptosis. Cho, B.P., Sugama, S., Shin, D.H., DeGiorgio, L.A., Kim, S.S., Kim, Y.S., Lim, S.Y., Park, K.C., Volpe, B.T., Cho, S., Joh, T.H. Cell. Mol. Neurobiol. (2003) [Pubmed]
  23. Polysynaptic regulation of glutamate receptors and mitochondrial enzyme activities in the basal ganglia of rats with unilateral dopamine depletion. Porter, R.H., Greene, J.G., Higgins, D.S., Greenamyre, J.T. J. Neurosci. (1994) [Pubmed]
  24. Forebrain origins and terminations of the medial forebrain bundle metabolically activated by rewarding stimulation or by reward-blocking doses of pimozide. Gallistel, C.R., Gomita, Y., Yadin, E., Campbell, K.A. J. Neurosci. (1985) [Pubmed]
  25. Extracellular dopamine and neurotensin in rat prefrontal cortex in vivo: effects of median forebrain bundle stimulation frequency, stimulation pattern, and dopamine autoreceptors. Bean, A.J., Roth, R.H. J. Neurosci. (1991) [Pubmed]
  26. Evoked neuronal activity accompanied by transmitter release increases oxygen concentration in rat striatum in vivo but not in vitro. Zimmerman, J.B., Kennedy, R.T., Wightman, R.M. J. Cereb. Blood Flow Metab. (1992) [Pubmed]
  27. Different subcellular localization of neurotensin-receptor and neurotensin-acceptor sites in the rat brain dopaminergic system. Schotte, A., Rostène, W., Laduron, P.M. J. Neurochem. (1988) [Pubmed]
  28. Effects of dopamine depletion on the morphology of medium spiny neurons in the shell and core of the rat nucleus accumbens. Meredith, G.E., Ypma, P., Zahm, D.S. J. Neurosci. (1995) [Pubmed]
  29. The ultrastructural localization of serotonin immunoreactivity in myelinated and unmyelinated axons within the medial forebrain bundle of rat and monkey. Azmitia, E., Gannon, P. J. Neurosci. (1983) [Pubmed]
  30. Urinary catecholamine metabolites in hyperkinetic boys treated with d-amphetamine. Shekim, W.O., Dekirmenjian, H., Chapel, J.L. The American journal of psychiatry. (1977) [Pubmed]
  31. Neurotransmitter basis of the behavioral effects of hallucinogens. Rech, R.H., Commissaris, R.L. Neuroscience and biobehavioral reviews. (1982) [Pubmed]
  32. Voltammetric study of the control of striatal dopamine release by glutamate. Borland, L.M., Michael, A.C. J. Neurochem. (2004) [Pubmed]
  33. ret receptor tyrosine kinase immunoreactivity is altered in glial cell line-derived neurotrophic factor-responsive neurons following lesions of the nigrostriatal and septohippocampal pathways. Araujo, D.M., Hilt, D.C., Miller, P.J., Wen, D., Jiao, S., Lapchak, P.A. Neuroscience (1997) [Pubmed]
  34. Specific pathophysiological functions of JNK isoforms in the brain. Brecht, S., Kirchhof, R., Chromik, A., Willesen, M., Nicolaus, T., Raivich, G., Wessig, J., Waetzig, V., Goetz, M., Claussen, M., Pearse, D., Kuan, C.Y., Vaudano, E., Behrens, A., Wagner, E., Flavell, R.A., Davis, R.J., Herdegen, T. Eur. J. Neurosci. (2005) [Pubmed]
  35. Distribution of catecholaminergic afferent fibres in the rat globus pallidus and their relations with cholinergic neurons. Rodrigo, J., Fernández, P., Bentura, M.L., de Velasco, J.M., Serrano, J., Uttenthal, O., Martínez-Murillo, R. J. Chem. Neuroanat. (1998) [Pubmed]
  36. Expression of BDNF mRNA in substantia nigra is dependent on target integrity and independent of neuronal activation. Rite, I., Venero, J.L., Tomás-Camardiel, M., Machado, A., Cano, J. J. Neurochem. (2003) [Pubmed]
  37. APP knockout attenuates microglial activation and enhances neuron survival in substantia nigra compacta after axotomy. DeGiorgio, L.A., Shimizu, Y., Chun, H.S., Cho, B.P., Sugama, S., Joh, T.H., Volpe, B.T. Glia (2002) [Pubmed]
  38. Elevated body swing test: a new behavioral parameter for rats with 6-hydroxydopamine-induced hemiparkinsonism. Borlongan, C.V., Sanberg, P.R. J. Neurosci. (1995) [Pubmed]
  39. Direct comparison of the response of voltammetry and microdialysis to electrically evoked release of striatal dopamine. Lu, Y., Peters, J.L., Michael, A.C. J. Neurochem. (1998) [Pubmed]
  40. Dopaminergic regulation of cannabinoid receptor mRNA levels in the rat caudate-putamen: an in situ hybridization study. Mailleux, P., Vanderhaeghen, J.J. J. Neurochem. (1993) [Pubmed]
  41. NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson's disease. Crocker, S.J., Wigle, N., Liston, P., Thompson, C.S., Lee, C.J., Xu, D., Roy, S., Nicholson, D.W., Park, D.S., MacKenzie, A., Korneluk, R.G., Robertson, G.S. Eur. J. Neurosci. (2001) [Pubmed]
  42. Growth/differentiation factor 5 and glial cell line-derived neurotrophic factor enhance survival and function of dopaminergic grafts in a rat model of Parkinson's disease. Sullivan, A.M., Pohl, J., Blunt, S.B. Eur. J. Neurosci. (1998) [Pubmed]
 
WikiGenes - Universities