The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Isoflavonoids and lignans have different potentials to modulate oxidative genetic damage in human colon cells.

Polyphenolic compounds, including isoflavonoids and lignans, have been suggested to be chemopreventive on account of antioxidative properties. In this context it is of importance to have knowledge of their ability to reduce oxidative stress within target cells of tumorigenesis. Therefore, we investigated isoflavonoids and lignans for modulation of oxidative genetic damage in mammalian cells. H(2)O(2)-induced damage as well as endogenous DNA strand breaks and oxidized bases were determined after 30 min incubation of human colon cells with polyphenols using various modifications of the microgel electrophoresis assay (Comet assay). Enterolactone, a mammalian metabolite of plant lignans, was additionally investigated for modulation of intracellular oxidative stress in NIH 3T3 cells using laser scanning microscopy. In vivo effects of rye crispbread (a source of lignans) were investigated in 12 human volunteers by determining genetic damage in lymphocytes and antioxidant activity in plasma ( FRAP assay). Genistein induced DNA breaks in the human tumour cell line HT29 clone 19A (12.5-100 microM). The polyphenols (100 microM) did not reduce damage induced by 150 microM H(2)O(2), indicating that they lacked antioxidative potential. At this concentration enterolactone also had no effect on intracellular oxidative stress induced by 31.25 and 125 microM H(2)O(2). In contrast, enterolactone, dihydrogenistein and formononetin reduced endogenous oxidative DNA damage at 100 microM. Daily ingestion of nine slices (76.5 g/day) of rye crispbread per day (containing 41.8 and 33.0 microg/100 g dry weight secoisolariciresinol and matairesinol, respectively) for 2 weeks did not significantly reduce genetic damage in blood lymphocytes, nor was there a modulation of plasma antioxidant capacity. The moderate effects of high concentrations of the tested compounds on endogenous oxidative DNA damage and failure to prevent H(2)O(2)- induced damage are indicative of only marginal protective potential by antioxidant mechanisms. The genotoxic effects of genistein deserve further investigation.[1]


  1. Isoflavonoids and lignans have different potentials to modulate oxidative genetic damage in human colon cells. Pool-Zobel, B.L., Adlercreutz, H., Glei, M., Liegibel, U.M., Sittlingon, J., Rowland, I., Wähälä, K., Rechkemmer, G. Carcinogenesis (2000) [Pubmed]
WikiGenes - Universities