The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Effect of streptozotocin-induced diabetes on NGF, P75(NTR) and TrkA content of prevertebral and paravertebral rat sympathetic ganglia.

Diabetic autonomic neuropathy results in significant morbidity and mortality. Both diabetic humans and experimental animals show neuroaxonal dystrophy of autonomic nerve terminals, particularly in the prevertebral superior mesenteric ganglia (SMG) and celiac ganglia (CG) which innervate the hyperplastic/hypertrophic diabetic small intestine. Previously, investigators suggested that disturbances in ganglionic nerve growth factor (NGF) content or transport might play a pathogenetic role in diabetic autonomic pathology. To test this hypothesis, we measured NGF content and NGF receptor expression, p75(NTR) (low affinity neurotrophin receptor) and trkA (high affinity NGF receptor), in control and diabetic rat SMG, CG and superior cervical ganglia (SCG). Surprisingly, rather than a decrease, we observed an approximate doubling of NGF content in the diabetic SMG and CG, a result which reflects increased NGF content in the hyperplastic diabetic alimentary tract. No change in NGF content was detected in the diabetic SCG which is relatively spared in experimental diabetic autonomic neuropathy. NGF receptor expression was not consistently altered in any of the autonomic ganglia. These observations suggest that increased NGF content in sympathetic ganglia innervating the diabetic alimentary tract coupled with intact receptor expression may produce aberrant axonal sprouting and neuroaxonal dystrophy.[1]

References

  1. Effect of streptozotocin-induced diabetes on NGF, P75(NTR) and TrkA content of prevertebral and paravertebral rat sympathetic ganglia. Schmidt, R.E., Dorsey, D.A., Roth, K.A., Parvin, C.A., Hounsom, L., Tomlinson, D.R. Brain Res. (2000) [Pubmed]
 
WikiGenes - Universities