The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Angiotensin in the nucleus tractus solitarii contributes to neurogenic hypertension caused by chronic nitric oxide synthase inhibition.

Activation of the sympathetic nervous system and renin-angiotensin system has been suggested to contribute to the hypertension caused by chronic nitric oxide synthase inhibition. The aim of the present study was to determine whether angiotensin within the nucleus tractus solitarii (NTS) plays a role in activation of the sympathetic nervous system in this model. Rats were treated with N(omega)-nitro-L-arginine methyl ester (L-NAME, 100 mg. kg(-1). d(-1) in drinking water) for 2 weeks. Experiments were performed on anesthetized rats with denervated arterial and cardiopulmonary baroreceptors. Arterial pressure, heart rate, and renal sympathetic nerve activity (RSNA) were measured. Microinjection of an angiotensin II type 1 (AT(1)) receptor antagonist (CV11974) or an angiotensin II type 2 (AT(2)) receptor antagonist (PD123319) into the depressor region within the NTS (identified by prior injection of L-glutamate) was performed. Microinjection of CV11974, but not of PD123319, produced greater decreases in arterial pressure, heart rate, and RSNA in L-NAME-treated rats than in control rats. The administration of hexamethonium resulted in a larger fall in arterial pressure in L-NAME-treated rats than in control rats. The ACE mRNA level in the brain stem was greater in L-NAME-treated rats than in control rats. These results suggest that increased sympathetic nerve activity plays a role in hypertension caused by chronic nitric oxide synthase inhibition and that activation of the renin-angiotensin system in the NTS is involved at least in part in this increased sympathetic nerve activity via AT(1) receptors.[1]

References

  1. Angiotensin in the nucleus tractus solitarii contributes to neurogenic hypertension caused by chronic nitric oxide synthase inhibition. Eshima, K., Hirooka, Y., Shigematsu, H., Matsuo, I., Koike, G., Sakai, K., Takeshita, A. Hypertension (2000) [Pubmed]
 
WikiGenes - Universities