The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier.

In this study, we have investigated the expression of aquaporin 4 during blood-brain barrier development in the optic tectum of chick embryos and newly hatched chicks, by means of western-blot, reverse transcriptase-polymerase chain reaction, immunohistochemistry, and freeze-fracture and high-resolution immunogold electron microscopy. In the optic tecta of day-14 embryos, western blot analysis revealed an approx. 30 kDa band, immunoreactive for aquaporin-4, which was increased in day-20 embryos and in chicks. Semi-quantitative reverse transcriptase chain reaction experiments showed that there was already a high level of aquaporin-4 mRNA in day-9 embryos as well as in the subsequent stages and in newly hatched chicks. Immunohistochemically, reactivity for aquaporin-4 was detected in the optic tectum of day-14 embryos; similar results were obtained in telencephalon and cerebellum. Ultrastructurally, the microvessels of the tectum showed immunoreactivity for aquaporin-4 on the astroglial endfeet, which discontinuously surrounded endothelial cells joined by immature tight junctions. In the tectum, telencephalon and cerebellum of 20-day embryos and chicks, aquaporin-4 strongly labeled the ependymal cells and the subpial glial membranes, as well as the bodies and processes of astroglial cells. A continuous aquaporin-4 staining was found around the microvessel endothelial cells, which were sealed off from one another by extensive tight junctions. A complete astrocytic sheath, labeled by anti-aquaporin-4 gold particles, enveloped the endothelium-pericyte layer. Orthogonal arrays of particles were observed on fractured astrocytic membranes, starting from embryonic day 14 when the aquaporin-4 immunogold staining revealed clusters of gold particles, often forming square or rectangular clusters. The results showed that aquaporin-4 expression and organization of the intramembrane particles in orthogonal arrays followed the same temporal sequence. Finally, the lipopolysaccharide, a substance that induces blood-brain barrier disruption, determines a remarkable reduction in aquaporin-4 labeling, expressed by a few aquaporin-4 gold particles attached on swollen perivascular glial membranes. All these data show that aquaporin-4 expression occurs in the chick embryonic brain, in parallel with maturation and functioning of the blood-brain barrier and suggest that there is a close relationship between water transport regulation and brain development.[1]

References

  1. Role of aquaporin-4 water channel in the development and integrity of the blood-brain barrier. Nico, B., Frigeri, A., Nicchia, G.P., Quondamatteo, F., Herken, R., Errede, M., Ribatti, D., Svelto, M., Roncali, L. J. Cell. Sci. (2001) [Pubmed]
 
WikiGenes - Universities