The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo.

BACKGROUND/AIMS: The hepatocyte canalicular membrane outer leaflet contains both phosphatidylcholine (PC) and sphingomyelin (SM). Normally, PC is the exclusive phospholipid in bile. We examined effects of bile salt hydrophobicity on cytotoxicity and on differential SM and PC distribution between detergent-resistant aggregated vesicles (model for detergent-resistant canalicular membrane) and mixed micelles or small unilamellar vesicles (representing lipid phases in bile). METHODS: Aggregated vesicles were obtained by ultracentrifugation of cholesterol-supersaturated model systems containing SM, PC and various bile salts, micelles by ultrafiltration and unilamellar vesicles by dialysis of the supernatant. Erythrocyte hemolysis and lactate dehydrogenase release from CaCo-2 cells upon incubation with various micelles were quantified. RESULTS: Preferential SM distribution and lipid solubilization in aggregated vesicles increased in rank order taurodeoxycholate < taurocholate < tauroursodeoxycholate < taurohyodeoxycholate, with reciprocal PC enrichment in micelles and small unilamellar vesicles. Including small amounts of PC within taurohyodeoxycholate micelles increased cytotoxicity with more erythrocyte hemolysis and LDH release from CaCo-2 cells upon incubation, but decreased cytotoxicity in case of tauroursodeoxycholate micelles. CONCLUSIONS: Hydrophilic but not hydrophobic bile salts preserve integrity of pathophysiologically relevant phosphatidylcholine plus sphingomyelin-containing bilayers. Enhanced biliary phospholipid secretion during taurohyodeoxycholate but not during tauroursodeoxycholate therapy (Hepatology 25 (1997) 1306) may relate to different interactions of these bile salts with phospholipids.[1]

References

  1. Hydrophilic bile salts enhance differential distribution of sphingomyelin and phosphatidylcholine between micellar and vesicular phases: potential implications for their effects in vivo. Moschetta, A., vanBerge-Henegouwen, G.P., Portincasa, P., Renooij, W.L., Groen, A.K., van Erpecum, K.J. J. Hepatol. (2001) [Pubmed]
 
WikiGenes - Universities