The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Taurodeoxycholate     2-[4-[(3R,10S,12S,13R)-3,12- dihydroxy-10...

Synonyms: AC1L99RD, C05463, TAURODEOXYCHOLIC ACID
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Taurodeoxycholate

 

High impact information on Taurodeoxycholate

 

Chemical compound and disease context of Taurodeoxycholate

 

Biological context of Taurodeoxycholate

 

Anatomical context of Taurodeoxycholate

  • Water and electrolyte absorption continued undisturbed when the gallbladders were exposed to 16.7 mM taurodeoxycholate together with 5.6 mM lecithin [15].
  • We have compared the potentially injurious effect of physiologic concentrations of trypsin, taurodeoxycholate, and pepsin at pH 7.5 using a continuously perfused rabbit esophagus model [1].
  • After 4 days of biliary drainage, rat livers were perfused in vitro in either forward (through the portal vein) or backward direction (through the vena cava) in single-pass arrangement with taurodeoxycholate (32 nmol.min-1.g liver-1) [8].
  • The enzyme reaction was optimal above pH 5.5, and a 2-3-fold stimulation of activity was observed when the membranes were assayed in the presence of 0.1% taurodeoxycholate [16].
  • Treatment of intact coated vesicles with pronase (0.05 mg/ml) had little effect on lysosomal enzyme activities, whereas a similar treatment of coated vesicles in the presence of 0.045% taurodeoxycholate resulted in the loss of most of the enzyme activities [17].
 

Associations of Taurodeoxycholate with other chemical compounds

 

Gene context of Taurodeoxycholate

 

Analytical, diagnostic and therapeutic context of Taurodeoxycholate

  • Swine livers were harvested after the intravenous infusion of 1 of 3 solutions: saline (n = 7), tauroursodeoxycholate ([TUDC] hydrophilic; n = 4), or taurodeoxycholate ([TDC] hydrophobic; n = 4) [27].
  • These bile salts also reduced crystallization dose dependently after addition of taurodeoxycholate to vesicles [28].
  • Cow, goat, and human globules were subjected to varying concentrations of the bile salt taurodeoxycholate at 37 degrees C for 2 min, and the released material was obtained by centrifugation at 2 degrees C and 50,000 g for 1 h [29].
  • Taurochenodeoxycholate 3,7-disulphate and taurodeoxycholate 3,12-disulphate in human urine were unequivocally identified on the basis of their behavior in HPLC using mobile phases of different pH [30].
  • This process of derivatization was carried out efficiently and in a nonselective manner over a period of 30 min at 90 degrees C. The resulting derivatives were separated with high resolution by capillary electrophoresis using borate buffer, containing taurodeoxycholate, as the separation buffer [31].

References

  1. Alkaline esophagitis: a comparison of the ability of components of gastroduodenal contents to injure the rabbit esophagus. Lillemoe, K.D., Johnson, L.F., Harmon, J.W. Gastroenterology (1983) [Pubmed]
  2. Conjugates of ursodeoxycholate protect against cholestasis and hepatocellular necrosis caused by more hydrophobic bile salts. In vivo studies in the rat. Heuman, D.M., Mills, A.S., McCall, J., Hylemon, P.B., Pandak, W.M., Vlahcevic, Z.R. Gastroenterology (1991) [Pubmed]
  3. Conjugates of ursodeoxycholate protect against cytotoxicity of more hydrophobic bile salts: in vitro studies in rat hepatocytes and human erythrocytes. Heuman, D.M., Pandak, W.M., Hylemon, P.B., Vlahcevic, Z.R. Hepatology (1991) [Pubmed]
  4. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Rossocha, M., Schultz-Heienbrok, R., von Moeller, H., Coleman, J.P., Saenger, W. Biochemistry (2005) [Pubmed]
  5. The role of bile acids in the development of endotoxemia during obstructive jaundice in the rat. Van Bossuyt, H., Desmaretz, C., Gaeta, G.B., Wisse, E. J. Hepatol. (1990) [Pubmed]
  6. Taurodeoxycholate activates potassium and chloride conductances via an IP3-mediated release of calcium from intracellular stores in a colonic cell line (T84). Devor, D.C., Sekar, M.C., Frizzell, R.A., Duffey, M.E. J. Clin. Invest. (1993) [Pubmed]
  7. Inhibitory effect of bile salts on gallbladder smooth muscle contractility in the guinea pig in vitro. Xu, Q.W., Freedman, S.M., Shaffer, E.A. Gastroenterology (1997) [Pubmed]
  8. Loss of zonal heterogeneity and cell polarity in rat liver with respect to bile acid secretion after bile drainage. Baumgartner, U., Schölmerich, J., Karsch, J., Gerok, W., Farthmann, E.H. Gastroenterology (1991) [Pubmed]
  9. The interaction of pH, bile, and Helicobacter pylori may explain duodenal ulcer. Han, S.W., Evans, D.G., el-Zaatari, F.A., Go, M.F., Graham, D.Y. Am. J. Gastroenterol. (1996) [Pubmed]
  10. Abcg5/Abcg8-independent pathways contribute to hepatobiliary cholesterol secretion in mice. Plösch, T., van der Veen, J.N., Havinga, R., Huijkman, N.C., Bloks, V.W., Kuipers, F. Am. J. Physiol. Gastrointest. Liver Physiol. (2006) [Pubmed]
  11. Hepatic overexpression of murine Abcb11 increases hepatobiliary lipid secretion and reduces hepatic steatosis. Figge, A., Lammert, F., Paigen, B., Henkel, A., Matern, S., Korstanje, R., Shneider, B.L., Chen, F., Stoltenberg, E., Spatz, K., Hoda, F., Cohen, D.E., Green, R.M. J. Biol. Chem. (2004) [Pubmed]
  12. Identification and characterization of a putative bile acid-responsive element in cholesterol 7 alpha-hydroxylase gene promoter. Chiang, J.Y., Stroup, D. J. Biol. Chem. (1994) [Pubmed]
  13. Characterization of the ileal Na+/bile salt co-transporter in brush border membrane vesicles and functional expression in Xenopus laevis oocytes. Mullins, J.G., Beechey, R.B., Gould, G.W., Campbell, F.C., Shirazi-Beechey, S.P. Biochem. J. (1992) [Pubmed]
  14. Taurodeoxycholate increases intestinal epithelial cell proliferation through c-myc expression. Yamaguchi, J., Toledo, A., Bass, B.L., Celeste, F.A., Rao, J.N., Wang, J.Y., Strauch, E.D. Surgery (2004) [Pubmed]
  15. Effect of taurine conjugated bile salts with and without lecithin on water and electrolyte transport in the canine gallbladder in vivo. Ammon, H.V. Gastroenterology (1979) [Pubmed]
  16. Acetyl coenzyme A: alpha-glucosaminide N-acetyltransferase. Evidence for a transmembrane acetylation mechanism. Bame, K.J., Rome, L.H. J. Biol. Chem. (1985) [Pubmed]
  17. Coated vesicles from rat liver and calf brain contain lysosomal enzymes bound to mannose 6-phosphate receptors. Campbell, C.H., Rome, L.H. J. Biol. Chem. (1983) [Pubmed]
  18. Functional and ultrastructural features of ethanol/bile salts interaction in the isolated perfused rat liver. Alvaro, D., Benedetti, A., Gigliozzi, A., Bini, A., Della Guardia, P., La Rosa, T., Jezequel, A.M., Capocaccia, L. Hepatology (1995) [Pubmed]
  19. Artificial bile inhibits bile salt-induced gallbladder glycoprotein release in vitro. O'Leary, D.P. Hepatology (1994) [Pubmed]
  20. Transcriptional regulation of cholesterol 7 alpha-hydroxylase mRNA by conjugated bile acids in primary cultures of rat hepatocytes. Stravitz, R.T., Hylemon, P.B., Heuman, D.M., Hagey, L.R., Schteingart, C.D., Ton-Nu, H.T., Hofmann, A.F., Vlahcevic, Z.R. J. Biol. Chem. (1993) [Pubmed]
  21. Nonaprenyl-4-hydroxybenzoate transferase, an enzyme involved in ubiquinone biosynthesis, in the endoplasmic reticulum-Golgi system of rat liver. Kalén, A., Appelkvist, E.L., Chojnacki, T., Dallner, G. J. Biol. Chem. (1990) [Pubmed]
  22. A taurodeoxycholate-activated galactosylceramidase in the murine intestine. Kobayashi, T., Suzuki, K. J. Biol. Chem. (1981) [Pubmed]
  23. Effect of intraduodenal bile and Na- taurodeoxycholate on exocrine pancreatic secretion and on plasma levels of secretin, pancreatic polypeptide, and gastrin in man. Riepl, R.L., Lehnert, P., Scharl, A., Hempen, I., Fiedler, F., Teufel, J., Burhol, P.G. Scand. J. Gastroenterol. (1990) [Pubmed]
  24. Identification of functionally important regions of the Saccharomyces cerevisiae mitochondrial translational activator Cbs1p. Krause-Buchholz, U., Tzschoppe, K., Paret, C., Ostermann, K., Rödel, G. Yeast (2000) [Pubmed]
  25. Uncoupling of biliary phospholipid and cholesterol secretion in mice with reduced expression of mdr2 P-glycoprotein. Oude Elferink, R.P., Ottenhoff, R., van Wijland, M., Frijters, C.M., van Nieuwkerk, C., Groen, A.K. J. Lipid Res. (1996) [Pubmed]
  26. Indomethacin disrupts the protective effect of phosphatidylcholine against bile salt-induced ileal mucosa injury. Venneman, N.G., Petruzzelli, M., van Dijk, J.E., Verheem, A., Akkermans, L.M., Kroese, A.B., van Erpecum, K.J. Eur. J. Clin. Invest. (2006) [Pubmed]
  27. Hydrophilic bile salts protect bile duct epithelium during cold preservation: a scanning electron microscopy study. Hertl, M., Hertl, M.C., Kluth, D., Broelsch, C.E. Liver Transpl. (2000) [Pubmed]
  28. Effects of bile salt hydrophobicity on crystallization of cholesterol in model bile. Van Erpecum, K.J., Portincasa, P., Gadellaa, M., Van de Heijning, B.J., Van Berge Henegouwen, G.P., Renooij, W. Eur. J. Clin. Invest. (1996) [Pubmed]
  29. Release of membrane from milk fat globules by conjugated bile salts. Patton, S., Borgström, B., Stemberger, B.H., Welsch, U. J. Pediatr. Gastroenterol. Nutr. (1986) [Pubmed]
  30. Studies on steroids. CCXXXIII. Separation and characterization of bile acid disulphates in human urine by high-performance liquid chromatography. Goto, J., Sano, Y., Tsuchiya, K., Nambara, T. J. Chromatogr. (1988) [Pubmed]
  31. High resolution and rapid analysis of branched oligosaccharides by capillary electrophoresis. Camilleri, P., Harland, G.B., Okafo, G. Anal. Biochem. (1995) [Pubmed]
 
WikiGenes - Universities