The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Control of Xist expression for imprinted and random X chromosome inactivation in mice.

Applying RNA fluorescence in situ hybridization to parthenogenetic embryos with two maternally derived X (X(M)) chromosomes and embryos with X chromosome aneuploidy such as X(P)0 (X(P), paternally derived X chromosome), X(M)X(M)X(P) and X(M)X(M)Y, we studied the control of Xist/Tsix expression for silencing the entire X chromosome in mice. The data show that the paternally derived Xist allele is highly expressed in every cell of the embryo from the 4-cell stage onward, irrespective of the number of X chromosomes in a diploid cell. The high level of Xist transcription is maintained in non-epiblast cells culminating in X(P)-inactivation, whereas in X(P)0 embryos it is terminated by the blastocyst stage, probably as a result of counting the number of X chromosomes in a cell occurring at the morula/blastocyst stage. Xist is also down-regulated in epiblast cells of X(M)X(P) and X(M)X(M)X(P) embryos to make X-inactivation random. In epiblast cells, Xist seems to be up-regulated after counting and random choice of the future inactive X chromosome(s). Although the maternal Xist allele is never activated in fertilized embryos before implantation, some parthenogenetic embryos show Xist up-regulation in a proportion of cells. These and other data reported earlier suggest that imprinted X-inactivation in non-epiblast tissues of rodents had been derived from the random X-inactivation system.[1]

References

  1. Control of Xist expression for imprinted and random X chromosome inactivation in mice. Matsui, J., Goto, Y., Takagi, N. Hum. Mol. Genet. (2001) [Pubmed]
 
WikiGenes - Universities