The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

alpha-Latrotoxin and its receptors: neurexins and CIRL/latrophilins.

alpha-Latrotoxin, a potent neurotoxin from black widow spider venom, triggers synaptic vesicle exocytosis from presynaptic nerve terminals. alpha-Latrotoxin is a large protein toxin (120 kDa) that contains 22 ankyrin repeats. In stimulating exocytosis, alpha-latrotoxin binds to two distinct families of neuronal cell-surface receptors, neurexins and CLs (Cirl/latrophilins), which probably have a physiological function in synaptic cell adhesion. Binding of alpha-latrotoxin to these receptors does not in itself trigger exocytosis but serves to recruit the toxin to the synapse. Receptor-bound alpha-latrotoxin then inserts into the presynaptic plasma membrane to stimulate exocytosis by two distinct transmitter-specific mechanisms. Exocytosis of classical neurotransmitters (glutamate, GABA, acetylcholine) is induced in a calcium-independent manner by a direct intracellular action of alpha-latrotoxin, while exocytosis of catecholamines requires extracellular calcium. Elucidation of precisely how alpha-latrotoxin works is likely to provide major insight into how synaptic vesicle exocytosis is regulated, and how the release machineries of classical and catecholaminergic neurotransmitters differ.[1]

References

 
WikiGenes - Universities