The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 

Links

 

Gene Review

ANK1  -  ankyrin 1, erythrocytic

Homo sapiens

Synonyms: ANK, ANK-1, Ankyrin-1, Ankyrin-R, Erythrocyte ankyrin, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of ANK1

 

High impact information on ANK1

 

Chemical compound and disease context of ANK1

 

Biological context of ANK1

  • The WRN locus was mapped relative to the marker loci, PLAT, ANK1, D8S135, and D8S87 of the comprehensive chromosome 8 linkage map [12].
  • The markers, their maximum lod scores, and recombination distances were ANK1 (ankyrin)--2.0 at 16%; D8S5 (TL11)--5.3 at 17%; D8S87 [a(CA)n repeat]--7.2 at 14%; LPL (lipoprotein lipase)--1.5 at 26%; and PLAT (plasminigen activator, tissue)--10.6 at 7% [13].
  • Nor did it show any alteration in the exons of the two ANK1 alleles, and the aggravating factor remained elusive [14].
  • Ankyrin Napoli: a de novo deletional frameshift mutation in exon 16 of ankyrin gene (ANK1) associated with spherocytosis [15].
  • In the DNA of peripheral blood mononuclear cells from healthy individuals, the promoter regions of EPB3 and ELB42 were extensively methylated, but the SPTB and ANK1 promoters were totally unmethylated [16].
 

Anatomical context of ANK1

  • The association of ankyrin with the AE1 anion exchanger contributes an essential function to the mechanical and viscoelastic properties of the erythrocyte and constitutes the best understood link between the plasma membrane and the underlying membrane skeleton [17].
  • Ankyrin and synapsin: spectrin-binding proteins associated with brain membranes [18].
  • The observations that some residues of the ankyrin binding site are mutated in Rh and RhAG proteins from some weak D and Rh(null) variants, respectively, suggest that the Rh-RhAG/ankyrin-R interaction plays a crucial role in the biosynthesis and/or the stability of the Rh complex in the red cell membrane [19].
  • The erythrocyte membrane provides the best studied example of how the spectrin-actin based membrane cytoskeleton is linked via two proteins, ankyrin and protein 4.1, to the anion exchanger (anion exchanger 1, AE1) [20].
  • We report here that ank1.5, a small splice variant of the ank1 gene localized on the sarcoplasmic reticulum membrane, is capable of interacting with a sequence of 25 aa located at the COOH terminus of obscurin [21].
 

Associations of ANK1 with chemical compounds

 

Physical interactions of ANK1

  • The AE1 binding domain of ankyrin consists of 24 tandem repeats of a 33-amino acid motif that is present on a wide variety of otherwise unrelated proteins [17].
  • Vaccinia virus K1L protein supports viral replication in human and rabbit cells through a cell-type-specific set of its ankyrin repeat residues that are distinct from its binding site for ACAP2 [3].
  • The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin [26].
  • These studies have enabled us to identify a potentially important functional role for protein 4.1 in modulating ankyrin binding to CD44 [27].
  • These findings suggest a general mechanism for the patterning of cell contact based on external signals that regulate tyrosine phosphorylation of L1CAM members and modulate their binding to ankyrin [5].
 

Enzymatic interactions of ANK1

  • A preliminary estimate indicates that both human erythrocyte membrane and cytosolic casein kinase II catalyze the incorporation of approximately 1.2 and 3.5 moles of phosphate into each mole of spectrin and ankyrin, respectively [28].
 

Regulatory relationships of ANK1

  • Nrarp (Notch-regulated ankyrin repeat protein) is a small protein that has two ankyrin repeats [29].
  • Death-associated protein (DAP)-kinase is a calcium/calmodulin regulated serine/threonine kinase that carries ankyrin repeats, a death domain, and is localized to the cytoskeleton [30].
  • Nuclear expression and consequent biological action of the eukaryotic NF-kappa B transcription factor complex are tightly regulated through its cytoplasmic retention by an ankyrin-rich inhibitory protein termed I kappa B alpha [31].
  • Thus, Notch4-induced inhibition of sprouting requires the ankyrin repeats and appears to involve RBP-Jkappa-dependent and -independent signaling [32].
  • However, a recent publication from the Felsenfeld laboratory () fills a gap in our knowledge of how the interaction of L1-type CAMs with the membrane skeleton adaptor protein ankyrin is severed by phosphorylation and suggests a feedback mechanism whereby the neurite-stimulating activity of L1-CAM is inversely connected to its cytoskeleton binding [33].
 

Other interactions of ANK1

  • Human 220-kDa ankyrin-B, a closely related ankyrin isoform, is incapable of preserving the lateral membrane following 190-kDa ankyrin-G depletion [34].
  • It also showed physical linkage of ANK1 and PLAT genes, which appear to be separated by a maximum of 700 kb [35].
  • Association of the brain anion exchanger, AE3, with the repeat domain of ankyrin [22].
  • Ankyrins from brain and erythrocytes have a similar domain structure with protease-resistant domains of Mr = 72,000 that contain spectrin-binding activity, and domains of Mr = 95,000 (brain ankyrin) or 90,000 (erythrocyte ankyrin) that contain binding sites for both tubulin and the anion channel [18].
  • The oligonucleotide primer pairs for the microsatellite DNA markers were D8S133, D8S136, D8S137, ANK1 on chromosome 8p12-21, LPLTET on chromosome 8p22, and D17S855 (intragenic to the BRCA1 gene) on chromosome 17q21 [36].
 

Analytical, diagnostic and therapeutic context of ANK1

  • Association was assessed by co-immunoprecipitation of ANK90-anion exchanger complexes from detergent extracts of cells cotransfected with plasmids encoding the ankyrin fragment and the anion exchanger or mutants thereof [22].
  • In order to verify the efficiency of this screening we screened the ankyrin-1 gene of 22 Czech dHS patients for both the reduced cDNA allele expression in the frequent (AC)n and the common exonic 26/39 polymorphisms, as well as for polymerase chain reaction (PCR) single-stranded conformation polymorphisms in any one of the 42 exons of ANK1 [37].
  • The present study reports the use of these antibodies to develop a radioimmunoassay capable of detecting femtomolar quantities of ankyrin, and demonstrates the presence of small but significant amounts of immunoreactivity in a variety of types of cells and tissues [38].
  • Double labeling and confocal microscopy techniques show that NBD-lipids, band 3 protein, protein 4.1, ankyrin, and spectrin are all sequestered within sickle red cells and colocalized at sites of Heinz bodies [39].
  • The phosphorylation state of the FIGQY tyrosine of neurofascin determines ankyrin-binding activity and patterns of cell segregation [5].

References

  1. Close linkage of the gene for Werner's syndrome to ANK1 and D8S87 on the short arm of chromosome 8. Nakura, J., Miki, T., Nagano, K., Kihara, K., Ye, L., Kamino, K., Fujiwara, Y., Yoshida, S., Murano, S., Fukuchi, K. Gerontology. (1993) [Pubmed]
  2. Hereditary spherocytosis associated with deletion of human erythrocyte ankyrin gene on chromosome 8. Lux, S.E., Tse, W.T., Menninger, J.C., John, K.M., Harris, P., Shalev, O., Chilcote, R.R., Marchesi, S.L., Watkins, P.C., Bennett, V. Nature (1990) [Pubmed]
  3. Vaccinia virus K1L protein supports viral replication in human and rabbit cells through a cell-type-specific set of its ankyrin repeat residues that are distinct from its binding site for ACAP2. Meng, X., Xiang, Y. Virology (2006) [Pubmed]
  4. Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Mohler, P.J., Rivolta, I., Napolitano, C., LeMaillet, G., Lambert, S., Priori, S.G., Bennett, V. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
  5. The phosphorylation state of the FIGQY tyrosine of neurofascin determines ankyrin-binding activity and patterns of cell segregation. Tuvia, S., Garver, T.D., Bennett, V. Proc. Natl. Acad. Sci. U.S.A. (1997) [Pubmed]
  6. Spectrin and ankyrin-based pathways: metazoan inventions for integrating cells into tissues. Bennett, V., Baines, A.J. Physiol. Rev. (2001) [Pubmed]
  7. Neurofibromatosis 2 tumour suppressor schwannomin interacts with betaII-spectrin. Scoles, D.R., Huynh, D.P., Morcos, P.A., Coulsell, E.R., Robinson, N.G., Tamanoi, F., Pulst, S.M. Nat. Genet. (1998) [Pubmed]
  8. Structure of an IkappaBalpha/NF-kappaB complex. Jacobs, M.D., Harrison, S.C. Cell (1998) [Pubmed]
  9. Ankyrin-1 mutations are a major cause of dominant and recessive hereditary spherocytosis. Eber, S.W., Gonzalez, J.M., Lux, M.L., Scarpa, A.L., Tse, W.T., Dornwell, M., Herbers, J., Kugler, W., Ozcan, R., Pekrun, A., Gallagher, P.G., Schröter, W., Forget, B.G., Lux, S.E. Nat. Genet. (1996) [Pubmed]
  10. Carp, a cardiac ankyrin-repeated protein, and its new homologue, Arpp, are differentially expressed in heart, skeletal muscle, and rhabdomyosarcomas. Ishiguro, N., Baba, T., Ishida, T., Takeuchi, K., Osaki, M., Araki, N., Okada, E., Takahashi, S., Saito, M., Watanabe, M., Nakada, C., Tsukamoto, Y., Sato, K., Ito, K., Fukayama, M., Mori, S., Ito, H., Moriyama, M. Am. J. Pathol. (2002) [Pubmed]
  11. Growth of Escherichia coli in acetate as a sole carbon source is inhibited by ankyrin-like repeats present in the 2',5'-linked oligoadenylate-dependent human RNase L enzyme. Díaz-Guerra, M., Esteban, M., Martínez, J.L. FEMS Microbiol. Lett. (1997) [Pubmed]
  12. A genetic analysis of the Werner syndrome region on human chromosome 8p. Thomas, W., Rubenstein, M., Goto, M., Drayna, D. Genomics (1993) [Pubmed]
  13. Linkage mapping of autosomal dominant retinitis pigmentosa (RP1) to the pericentric region of human chromosome 8. Blanton, S.H., Heckenlively, J.R., Cottingham, A.W., Friedman, J., Sadler, L.A., Wagner, M., Friedman, L.H., Daiger, S.P. Genomics (1991) [Pubmed]
  14. Novel band 3 variants (bands 3 Foggia, Napoli I and Napoli II) associated with hereditary spherocytosis and band 3 deficiency: status of the D38A polymorphism within the EPB3 locus. Miraglia del Giudice, E., Vallier, A., Maillet, P., Perrotta, S., Cutillo, S., Iolascon, A., Tanner, M.J., Delaunay, J., Alloisio, N. Br. J. Haematol. (1997) [Pubmed]
  15. Ankyrin Napoli: a de novo deletional frameshift mutation in exon 16 of ankyrin gene (ANK1) associated with spherocytosis. del Giudice, E.M., Hayette, S., Bozon, M., Perrotta, S., Alloisio, N., Vallier, A., Iolascon, A., Delaunay, J., Morlé, L. Br. J. Haematol. (1996) [Pubmed]
  16. DNA methylation in promoter regions of red cell membrane protein genes in healthy individuals and patients with hereditary membrane disorders. Remus, R., Kanzaki, A., Yawata, A., Nakanishi, H., Wada, H., Sugihara, T., Zeschnigk, M., Zuther, I., Schmitz, B., Naumann, F., Doerfler, W., Yawata, Y. Int. J. Hematol. (2005) [Pubmed]
  17. Mapping of ankyrin binding determinants on the erythroid anion exchanger, AE1. Ding, Y., Kobayashi, S., Kopito, R. J. Biol. Chem. (1996) [Pubmed]
  18. Ankyrin and synapsin: spectrin-binding proteins associated with brain membranes. Bennett, V., Baines, A.J., Davis, J.Q. J. Cell. Biochem. (1985) [Pubmed]
  19. Functional interaction between Rh proteins and the spectrin-based skeleton in erythroid and epithelial cells. Nicolas, V., Mouro-Chanteloup, I., Lopez, C., Gane, P., Gimm, A., Mohandas, N., Cartron, J.P., Le Van Kim, C., Colin, Y. Transfusion clinique et biologique : journal de la Société française de transfusion sanguine. (2006) [Pubmed]
  20. Identification of the binding interface involved in linkage of cytoskeletal protein 4.1 to the erythrocyte anion exchanger. Jöns, T., Drenckhahn, D. EMBO J. (1992) [Pubmed]
  21. Binding of an ankyrin-1 isoform to obscurin suggests a molecular link between the sarcoplasmic reticulum and myofibrils in striated muscles. Bagnato, P., Barone, V., Giacomello, E., Rossi, D., Sorrentino, V. J. Cell Biol. (2003) [Pubmed]
  22. Association of the brain anion exchanger, AE3, with the repeat domain of ankyrin. Morgans, C.W., Kopito, R.R. J. Cell. Sci. (1993) [Pubmed]
  23. Ankyrin peptide blocks falcipain-2-mediated malaria parasite release from red blood cells. Dhawan, S., Dua, M., Chishti, A.H., Hanspal, M. J. Biol. Chem. (2003) [Pubmed]
  24. A cysteine protease activity from Plasmodium falciparum cleaves human erythrocyte ankyrin. Raphael, P., Takakuwa, Y., Manno, S., Liu, S.C., Chishti, A.H., Hanspal, M. Mol. Biochem. Parasitol. (2000) [Pubmed]
  25. Has immunoblotting replaced electroimmunoprecipitation? Examples from the analysis of autoantigens and transglutaminase-induced polymers of the human erythrocyte membrane. Bjerrum, O.J., Heegaard, N.H. J. Chromatogr. (1989) [Pubmed]
  26. The hydrophilic domain of small ankyrin-1 interacts with the two N-terminal immunoglobulin domains of titin. Kontrogianni-Konstantopoulos, A., Bloch, R.J. J. Biol. Chem. (2003) [Pubmed]
  27. Regulation of CD44-protein 4.1 interaction by Ca2+ and calmodulin. Implications for modulation of CD44-ankyrin interaction. Nunomura, W., Takakuwa, Y., Tokimitsu, R., Krauss, S.W., Kawashima, M., Mohandas, N. J. Biol. Chem. (1997) [Pubmed]
  28. Human erythrocyte casein kinase II: characterization and phosphorylation of membrane cytoskeletal proteins. Wei, T., Tao, M. Arch. Biochem. Biophys. (1993) [Pubmed]
  29. Nrarp functions to modulate neural-crest-cell differentiation by regulating LEF1 protein stability. Ishitani, T., Matsumoto, K., Chitnis, A.B., Itoh, M. Nat. Cell Biol. (2005) [Pubmed]
  30. DAP-kinase participates in TNF-alpha- and Fas-induced apoptosis and its function requires the death domain. Cohen, O., Inbal, B., Kissil, J.L., Raveh, T., Berissi, H., Spivak-Kroizaman, T., Feinstein, E., Kimchi, A. J. Cell Biol. (1999) [Pubmed]
  31. Both amino- and carboxyl-terminal sequences within I kappa B alpha regulate its inducible degradation. Sun, S., Elwood, J., Greene, W.C. Mol. Cell. Biol. (1996) [Pubmed]
  32. Notch4-induced inhibition of endothelial sprouting requires the ankyrin repeats and involves signaling through RBP-Jkappa. MacKenzie, F., Duriez, P., Larrivée, B., Chang, L., Pollet, I., Wong, F., Yip, C., Karsan, A. Blood (2004) [Pubmed]
  33. Phosphorylation of L1-type cell-adhesion molecules - ankyrins away! Nagaraj, K., Hortsch, M. Trends Biochem. Sci. (2006) [Pubmed]
  34. Lateral membrane biogenesis in human bronchial epithelial cells requires 190-kDa ankyrin-G. Kizhatil, K., Bennett, V. J. Biol. Chem. (2004) [Pubmed]
  35. Characterization of the region of the short arm of chromosome 8 amplified in breast carcinoma. Dib, A., Adélaïde, J., Chaffanet, M., Imbert, A., Le Paslier, D., Jacquemier, J., Gaudray, P., Theillet, C., Birnbaum, D., Pébusque, M.J. Oncogene (1995) [Pubmed]
  36. Allelic imbalance in the clonal evolution of prostate carcinoma. Cheng, L., Bostwick, D.G., Li, G., Wang, Q., Hu, N., Vortmeyer, A.O., Zhuang, Z. Cancer (1999) [Pubmed]
  37. Simultaneous (AC)n microsatellite polymorphism analysis and single-stranded conformation polymorphism screening is an efficient strategy for detecting ankyrin-1 mutations in dominant hereditary spherocytosis. Ozcan, R., Jarolim, P., Lux, S.E., Ungewickell, E., Eber, S.W. Br. J. Haematol. (2003) [Pubmed]
  38. Immunoreactive forms of human erythrocyte ankyrin are present in diverse cells and tissues. Bennett, V. Nature (1979) [Pubmed]
  39. Red cell membrane remodeling in sickle cell anemia. Sequestration of membrane lipids and proteins in Heinz bodies. Liu, S.C., Yi, S.J., Mehta, J.R., Nichols, P.E., Ballas, S.K., Yacono, P.W., Golan, D.E., Palek, J. J. Clin. Invest. (1996) [Pubmed]
 
WikiGenes - Universities