The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Influence of simulated microgravity on cardiovascular and hemodynamic parameters in Dahl salt-sensitive rats.

Prolonged exposure to microgravity, in humans, induces cardiovascular deconditioning and impairment of baroreflex activity partially as a result of fluid and electrolyte shifts. Animal models of simulated microgravity have been developed to mimic the above responses. We examined the effects of both 24 hr whole body suspension and 7 day tail-suspension and the subsequent 6 hr post-suspension in salt-loaded (2 wks on 8% NaCl diet) Dahl salt-sensitive rats. In both models, mean arterial pressure (MAP) and heart rate (HR) were unchanged during the suspension period. Upon release from suspension, there was no difference in the MAP or HR responses. Blood flows measured in the lower abdominal aorta and renal artery were not different between suspended and control animals. In both models, there was a similar body weight reduction in all groups. MAP responses to both phenylephrine (PHE) and sodium nitroprusside (SNP) were not affected by simulated microgravity. The HR response to SNP in suspended animals was greater than that of control animals; whereas, PHE-induced responses were not different. These data support the notion that simulated microgravity did not alter the MAP responses to SNP and PHE, however, HR responses were enhanced by SNP in the salt-loaded Dahl rats. In addition, salt-sensitivity/salt-loading prevents the reduction in MAP observed post-suspension in normotensive rats.[1]


  1. Influence of simulated microgravity on cardiovascular and hemodynamic parameters in Dahl salt-sensitive rats. Bayorh, M.A., Socci, R.R., Wang, M., Thierry-Palmer, M., Emmett, N. Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology. (1999) [Pubmed]
WikiGenes - Universities