The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
MeSH Review

Weightlessness

 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Weightlessness

 

High impact information on Weightlessness

  • We have previously demonstrated that low-shear modeled microgravity (LSMMG) under optimized rotation suspension culture is a novel environmental signal that regulates the virulence, stress resistance, and protein expression levels of Salmonella enterica serovar Typhimurium [1].
  • In conclusion, microgravity substantially affected osteoblastic integrin-mediated cell adhesion [6].
  • When T cells were stimulated with Bead-Leu4 in microgravity culture, they were able to partially express CD69, a receptor that is constitutively stored in intracellular pools and can be expressed in the absence of new gene expression [7].
  • EGF-induced c-fos and c-jun expression decreased in microgravity [8].
  • These results demonstrate that FN is made by sera-activated osteoblasts even during exposure to microgravity [9].
 

Chemical compound and disease context of Weightlessness

  • Ocular torsion (OT) was measured in human subjects during horizontal linear acceleration on a sled in the laboratory and when emerging from weightlessness during parabolic flights in NASA's KC-135 aircraft [10].
  • Glucose interference in production of microcin B17 by Escherichia coli ZK650 was decreased sevenfold by growth in a ground-based rotating-wall bioreactor operated in the simulated microgravity mode as compared with growth in flasks [11].
  • The scarcity of trinucleate pollen, abrupt cessation of floret development prior to anthesis, and excess tillering in wheat plants on Mir and in ethylene-containing atmospheres on earth build a strong case for the ethylene on Mir as the agent for the induced male sterility and other symptoms, rather than microgravity [12].
  • The present research aimed to elucidate the effects of microgravity environments on bone turnover, with a specific focus on changes in bone resorption markers such as type I collagen cross-linked N-telopeptides (NTx) and deoxypyridinoline (Dpyr), for which scant data are available regarding detailed time course [13].
  • Effect of simulated microgravity on PGE2-induced edema and hyperalgesia in rat paws: pharmacological data and biochemical correlates [14].
 

Biological context of Weightlessness

 

Anatomical context of Weightlessness

 

Associations of Weightlessness with chemical compounds

 

Gene context of Weightlessness

  • Here, we provide evidence that the mechanical forces altered by simulated microgravity localize and maintain VEGFR-2 in the membrane, and also block VEGF-A expression [26].
  • Exposure of human A431 cells to microgravity strongly suppresses EGF- and PMA-induced c-fos and c-jun expression [27].
  • Using our microarray, we identified changes in the level of expression of 10 genes, belonging to either the tumor necrosis factor- (TNF) or interleukin- (IL) related gene families in fibroblasts when WI38 cells exposed to microgravity during the STS-93 Space Shuttle mission were compared with ground controls [28].
  • Simulated microgravity inhibited the epidermal growth factor (EGF)-induced c-fos gene expression in the MC3T3-El cells [29].
  • The decrease in c-fos and c-jun expression in microgravity may result in the decreased formation of the FOS and JUN proteins [27].
 

Analytical, diagnostic and therapeutic context of Weightlessness

References

  1. Microarray analysis identifies Salmonella genes belonging to the low-shear modeled microgravity regulon. Wilson, J.W., Ramamurthy, R., Porwollik, S., McClelland, M., Hammond, T., Allen, P., Ott, C.M., Pierson, D.L., Nickerson, C.A. Proc. Natl. Acad. Sci. U.S.A. (2002) [Pubmed]
  2. Aminohydroxybutane bisphosphonate and clenbuterol prevent bone changes and retard muscle atrophy respectively in tail-suspended rats. Apseloff, G., Girten, B., Walker, M., Shepard, D.R., Krecic, M.E., Stern, L.S., Gerber, N. J. Pharmacol. Exp. Ther. (1993) [Pubmed]
  3. Promethazine affects autonomic cardiovascular mechanisms minimally. Brown, T.E., Eckberg, D.L. J. Pharmacol. Exp. Ther. (1997) [Pubmed]
  4. Orthostatic hypotension in patients, bed rest subjects, and astronauts. Lathers, C.M., Charles, J.B. Journal of clinical pharmacology. (1994) [Pubmed]
  5. Comparative analysis of space-grown and earth-grown crystals of an aminoacyl-tRNA synthetase: space-grown crystals are more useful for structural determination. Ng, J.D., Sauter, C., Lorber, B., Kirkland, N., Arnez, J., Giegé, R. Acta Crystallogr. D Biol. Crystallogr. (2002) [Pubmed]
  6. Cell cycling determines integrin-mediated adhesion in osteoblastic ROS 17/2.8 cells exposed to space-related conditions. Guignandon, A., Lafage-Proust, M.H., Usson, Y., Laroche, N., Caillot-Augusseau, A., Alexandre, C., Vico, L. FASEB J. (2001) [Pubmed]
  7. T cell activation responses are differentially regulated during clinorotation and in spaceflight. Hashemi, B.B., Penkala, J.E., Vens, C., Huls, H., Cubbage, M., Sams, C.F. FASEB J. (1999) [Pubmed]
  8. Growth factor-induced signal transduction in adherent mammalian cells is sensitive to gravity. Boonstra, J. FASEB J. (1999) [Pubmed]
  9. Osteoblast fibronectin mRNA, protein synthesis, and matrix are unchanged after exposure to microgravity. Hughes-Fulford, M., Gilbertson, V. FASEB J. (1999) [Pubmed]
  10. Ocular torsion on earth and in weightlessness. Young, L.R., Lichtenberg, B.K., Arrott, A.P., Crites, T.A., Oman, C.M., Edelman, E.R. Ann. N. Y. Acad. Sci. (1981) [Pubmed]
  11. Relief from glucose interference in microcin B17 biosynthesis by growth in a rotating-wall bioreactor. Fang, A., Pierson, D.L., Mishra, S.K., Demain, A.L. Lett. Appl. Microbiol. (2000) [Pubmed]
  12. Comparative floral development of Mir-grown and ethylene-treated, earth-grown Super Dwarf wheat. Campbell, W.F., Salisbury, F.B., Bugbee, B., Klassen, S., Naegle, E., Strickland, D.T., Bingham, G.E., Levinskikh, M., Iljina, G.M., Veselova, T.D., Sytchev, V.N., Podolsky, I., McManus, W.R., Bubenheim, D.L., Stieber, J., Jahns, G. J. Plant Physiol. (2001) [Pubmed]
  13. Changes in bone turnover markers during 14-day 6 degrees head-down bed rest. Kim, H., Iwasaki, K., Miyake, T., Shiozawa, T., Nozaki, S., Yajima, K. J. Bone Miner. Metab. (2003) [Pubmed]
  14. Effect of simulated microgravity on PGE2-induced edema and hyperalgesia in rat paws: pharmacological data and biochemical correlates. Peana, A.T., Bennardini, F., Buttu, L., Pippia, P., Meloni, M.A., Stuffler, R.G., Maccarrone, M. Journal of gravitational physiology : a journal of the International Society for Gravitational Physiology. (2004) [Pubmed]
  15. RhoA and cytoskeletal disruption mediate reduced osteoblastogenesis and enhanced adipogenesis of human mesenchymal stem cells in modeled microgravity. Meyers, V.E., Zayzafoon, M., Douglas, J.T., McDonald, J.M. J. Bone Miner. Res. (2005) [Pubmed]
  16. Orthostatic intolerance after space flight. Wieling, W., Halliwill, J.R., Karemaker, J.M. J. Physiol. (Lond.) (2002) [Pubmed]
  17. Creating conditions similar to those that occur during exposure of cells to microgravity induces apoptosis in human lymphocytes by 5-lipoxygenase-mediated mitochondrial uncoupling and cytochrome c release. Maccarrone, M., Battista, N., Meloni, M., Bari, M., Galleri, G., Pippia, P., Cogoli, A., Finazzi-Agrò, A. J. Leukoc. Biol. (2003) [Pubmed]
  18. Antipyrine pharmacokinetics in the tail-suspended rat model. Brunner, L.J., DiPiro, J.T., Feldman, S. J. Pharmacol. Exp. Ther. (1995) [Pubmed]
  19. Change of chloride ion channel conductance is an early event of slow-to-fast fibre type transition during unloading-induced muscle disuse. Pierno, S., Desaphy, J.F., Liantonio, A., De Bellis, M., Bianco, G., De Luca, A., Frigeri, A., Nicchia, G.P., Svelto, M., Léoty, C., George, A.L., Camerino, D.C. Brain (2002) [Pubmed]
  20. Prolonged weightlessness affects promyelocytic multidrug resistance. Piepmeier, E.H., Kalns, J.E., McIntyre, K.M., Lewis, M.L. Exp. Cell Res. (1997) [Pubmed]
  21. Mitogenic signal transduction in T lymphocytes in microgravity. Cogoli, A., Bechler, B., Cogoli-Greuter, M., Criswell, S.B., Joller, H., Joller, P., Hunzinger, E., Müller, O. J. Leukoc. Biol. (1993) [Pubmed]
  22. A proteolytic NH2-terminal truncation of cardiac troponin I that is up-regulated in simulated microgravity. Yu, Z.B., Zhang, L.F., Jin, J.P. J. Biol. Chem. (2001) [Pubmed]
  23. Decreased mineralization and increased calcium release in isolated fetal mouse long bones under near weightlessness. Van Loon, J.J., Bervoets, D.J., Burger, E.H., Dieudonné, S.C., Hagen, J.W., Semeins, C.M., Doulabi, B.Z., Veldhuijzen, J.P. J. Bone Miner. Res. (1995) [Pubmed]
  24. Effect of hyper- and microgravity on collagen post-translational controls of MC3T3-E1 osteoblasts. Saito, M., Soshi, S., Fujii, K. J. Bone Miner. Res. (2003) [Pubmed]
  25. Growth and form of planetary seedlings: results from a sounding rocket microgravity aggregation experiment. Krause, M., Blum, J. Phys. Rev. Lett. (2004) [Pubmed]
  26. Simulated microgravity impairs leukemic cell survival through altering VEGFR-2/VEGF-A signaling pathway. Vincent, L., Avancena, P., Cheng, J., Rafii, S., Rabbany, S.Y. Annals of biomedical engineering. (2005) [Pubmed]
  27. Effects of gravity on the cellular response to epidermal growth factor. Rijken, P.J., Boonstra, J., Verkleij, A.J., de Laat, S.W. Adv. Space Biol. Med. (1994) [Pubmed]
  28. Alterations in TNF- and IL-related gene expression in space-flown WI38 human fibroblasts. Semov, A., Semova, N., Lacelle, C., Marcotte, R., Petroulakis, E., Proestou, G., Wang, E. FASEB J. (2002) [Pubmed]
  29. Effects of microgravity on c-fos gene expression in osteoblast-like MC3T3-E1 cells. Sato, A., Hamazaki, T., Oomura, T., Osada, H., Kakeya, M., Watanabe, M., Nakamura, T., Nakamura, Y., Koshikawa, N., Yoshizaki, I., Aizawa, S., Yoda, S., Ogiso, A., Takaoki, M., Kohno, Y., Tanaka, H. Advances in space research : the official journal of the Committee on Space Research (COSPAR). (1999) [Pubmed]
  30. Energy requirements for space flight. Lane, H.W. J. Nutr. (1992) [Pubmed]
  31. Biological Macromolecule Crystallization Database, Version 3.0: new features, data and the NASA archive for protein crystal growth data. Gilliland, G.L., Tung, M., Blakeslee, D.M., Ladner, J.E. Acta Crystallogr. D Biol. Crystallogr. (1994) [Pubmed]
  32. Osteogenic induction of human periodontal ligament fibroblasts under two- and three-dimensional culture conditions. Inanc, B., Elcin, A.E., Elcin, Y.M. Tissue engineering. (2006) [Pubmed]
  33. Use of a microgravity organ culture dish system to demonstrate the signal dampening effects of modeled microgravity during T cell development. Woods, C.C., Banks, K.E., Lebsack, T.W., White, T.C., Anderson, G.A., Maccallum, T., Gruener, R., DeLuca, D. Dev. Comp. Immunol. (2005) [Pubmed]
 
WikiGenes - Universities