Cutting edge: Differential regulation of chemoattractant receptor-induced degranulation and chemokine production by receptor phosphorylation.
Phosphorylation of G protein-coupled receptors and the subsequent recruitment of beta-arrestin play an important role in desensitization of receptor-mediated responses, including degranulation in leukocytes. In this study, we report that receptor phosphorylation also provides a stimulatory signal for CCR ligand 2 (CCL2) production. C3a stimulated degranulation in a basophilic leukemia RBL-2H3 cell expressing wild-type C3aR or a phosphorylation-deficient mutant (DeltaST-C3aR). In contrast, C3a caused CCL2 production only in C3aR but not DeltaST-C3aR cells. Furthermore, overexpression of G protein-coupled receptor kinase 2 resulted in enhancement of both ligand- induced receptor phosphorylation and CCL2 production but inhibition of degranulation. Agonist activation of C3aR, but not DeltaST-C3aR, led to the translocation of green fluorescent protein tagged beta-arrestin 2 from the cytoplasm to the plasma membrane. These data demonstrate that receptor phosphorylation, which provides a turn off signal for degranulation, is essential for CCL2 production.[1]References
- Cutting edge: Differential regulation of chemoattractant receptor-induced degranulation and chemokine production by receptor phosphorylation. Ahamed, J., Haribabu, B., Ali, H. J. Immunol. (2001) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg