The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chronotherapy with active vitamin D3 in aged stroke-prone spontaneously hypertensive rats, a model of osteoporosis.

The chronotherapeutic effects of 1-alpha-(OH) vitamin D3, a pro-drug of 1,25(OH)2 vitamin D3 (1,25(OH)2D3), were evaluated by repeated dosing of the drug in aged stroke-prone spontaneously hypertensive male rats, a model of osteoporosis. Animals (7 months old) were kept in rooms with a 12-h light/dark cycle. Drug (0.5 microg/kg) or vehicle was given once daily at 2 or 14 h after lights on for 3 months. The severity of adverse effects such as body weight loss, hypercalcemia and hyperphosphatemia was significantly less when the drug was given at 14 h after lights on (14 HALO). Serum 1,25(OH)2 vitamin D3 concentrations of 2 h after lights on (2 HALO) group and 14 HALO group did not differ significantly after dosing. The decrease in parathyroid hormone ( PTH) level 12 weeks after the start of the study was greater in the 14 HALO group than in the 2 HALO group. Urinary excretion of inorganic Ca and P in the 2 HALO group was greater than that in the 14 HALO group. Urinary excretion of deoxypyridiniline, an index of the bone resorption capacity of osteoclasts, was much suppressed in the 14 HALO group, suggesting that the efficacy of vitamin D3 for suppressing bone resorption might vary with the dosing time. The increase in bone density of both femurs, determined by dual-energy X-ray absorption at the end of the study, was greater in the 14 HALO group than in the 2 HALO group. This is the first study to show the dosing time-dependent efficacy and toxicity of active vitamin D3 in an animal model of osteoporosis. These results indicate that a chronopharmacological approach is beneficial for establishing a more effective and/or safer regimen of active vitamin D3 for the treatment of osteoporosis.[1]

References

  1. Chronotherapy with active vitamin D3 in aged stroke-prone spontaneously hypertensive rats, a model of osteoporosis. Tsuruoka, S., Nishiki, K., Sugimoto, K., Fujimura, A. Eur. J. Pharmacol. (2001) [Pubmed]
 
WikiGenes - Universities