The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
Chemical Compound Review

Calciol     (1S,3Z)-3-[(2E)-2- [(1R,3aR,7aR)-7a-methyl...

Synonyms: Ricketon, Trivitan, Vigorsan, Arachitol, Delsterol, ...
 
 
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.
 

Disease relevance of Calciol

 

Psychiatry related information on Calciol

 

High impact information on Calciol

  • We show that 25-(OH) vitamin D3 in complex with its plasma carrier, the vitamin D-binding protein, is filtered through the glomerulus and reabsorbed in the proximal tubules by the endocytic receptor megalin [11].
  • Endocytosis is required to preserve 25-(OH) vitamin D3 and to deliver to the cells the precursor for generation of 1,25-(OH)2 vitamin D3, a regulator of the calcium metabolism [11].
  • The ligand for osteoprotegerin has been identified, and it is a TNF-related cytokine that replaces the requirement for stromal cells, vitamin D3, and glucocorticoids in the coculture model of in vitro osteoclastogenesis [12].
  • Osf2/Cbfa1 expression is initiated in the mesenchymal condensations of the developing skeleton, is strictly restricted to cells of the osteoblast lineage thereafter, and is regulated by BMP7 and vitamin D3 [13].
  • We expressed the PML-RAR alpha protein in U937 myeloid precursor cells and showed that they lost the capacity to differentiate under the action of different stimuli (vitamin D3 and transforming growth factor beta 1), acquired enhanced sensitivity to retinoic acid, and exhibited a higher growth rate consequent to diminished apoptotic cell death [14].
 

Chemical compound and disease context of Calciol

 

Biological context of Calciol

 

Anatomical context of Calciol

 

Associations of Calciol with other chemical compounds

 

Gene context of Calciol

  • In hemopoietic cells from PMLRARalpha TM, PML inactivation resulted in impaired response to differentiating agents such as RA and vitamin D3 as well as in a marked survival advantage upon proapoptotic stimuli [33].
  • Here, we report a novel cytoplasmic localization of p21(Cip1/WAF1) in peripheral blood monocytes (PBMs) and in U937 cells undergoing monocytic differentiation by in vitro treatment with vitamin D3 or ectopic expression of p21(Cip1/WAF1), and analyze the biological consequences of this cytoplasmic expression [34].
  • The expression of hTAF(II)28 also potentiated transactivation by several nuclear receptors, notably the oestrogen and vitamin D3 receptors (ER and VDR), whereas other classes of activator were not affected [35].
  • These results indicate that this 24-bp sequence containing two 9-bp motifs binds to the vitamin D receptor and mediates the vitamin D3 enhancement of murine Spp-1 gene expression [36].
  • A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1) [37].
 

Analytical, diagnostic and therapeutic context of Calciol

References

  1. Vitamin D3 and calcium to prevent hip fractures in the elderly women. Chapuy, M.C., Arlot, M.E., Duboeuf, F., Brun, J., Crouzet, B., Arnaud, S., Delmas, P.D., Meunier, P.J. N. Engl. J. Med. (1992) [Pubmed]
  2. Characterization of 1 alpha-hydroxylation of vitamin D3 sterols by cultured alveolar macrophages from patients with sarcoidosis. Adams, J.S., Gacad, M.A. J. Exp. Med. (1985) [Pubmed]
  3. Increased calcium intake does not suppress circulating 1,25-dihydroxyvitamin D in normocalcemic patients with sarcoidosis. Basile, J.N., Liel, Y., Shary, J., Bell, N.H. J. Clin. Invest. (1993) [Pubmed]
  4. Prevention of preneoplastic mammary lesion development by a novel vitamin D analogue, 1alpha-hydroxyvitamin D5. Mehta, R.G., Moriarty, R.M., Mehta, R.R., Penmasta, R., Lazzaro, G., Constantinou, A., Guo, L. J. Natl. Cancer Inst. (1997) [Pubmed]
  5. Effects of active vitamin D3 and parathyroid hormone on the serum osteocalcin in idiopathic hypoparathyroidism and pseudohypoparathyroidism. Mizunashi, K., Furukawa, Y., Miura, R., Yumita, S., Sohn, H.E., Yoshinaga, K. J. Clin. Invest. (1988) [Pubmed]
  6. Nitric oxide: biphasic dose responses. Calabrese, E.J. Crit. Rev. Toxicol. (2001) [Pubmed]
  7. Falls in the elderly: a prospective study of risk factors and risk profiles. Graafmans, W.C., Ooms, M.E., Hofstee, H.M., Bezemer, P.D., Bouter, L.M., Lips, P. Am. J. Epidemiol. (1996) [Pubmed]
  8. 1,25 (OH)2 vitamin D3 levels in seasonal affective disorder: effects of light. Oren, D.A., Schulkin, J., Rosenthal, N.E. Psychopharmacology (Berl.) (1994) [Pubmed]
  9. The effect of vitamin D3 on resistance to stress-related infection in an experimental model of turkey osteomyelitis complex. Huff, G.R., Huff, W.E., Balog, J.M., Rath, N.C. Poult. Sci. (2000) [Pubmed]
  10. Changes in sexual behavior of adult male and female rats neonatally treated with vitamin D3. Mirzahosseini, S., Karabélyos, C., Dobozy, O., Csaba, G. Human & experimental toxicology. (1996) [Pubmed]
  11. An endocytic pathway essential for renal uptake and activation of the steroid 25-(OH) vitamin D3. Nykjaer, A., Dragun, D., Walther, D., Vorum, H., Jacobsen, C., Herz, J., Melsen, F., Christensen, E.I., Willnow, T.E. Cell (1999) [Pubmed]
  12. Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Lacey, D.L., Timms, E., Tan, H.L., Kelley, M.J., Dunstan, C.R., Burgess, T., Elliott, R., Colombero, A., Elliott, G., Scully, S., Hsu, H., Sullivan, J., Hawkins, N., Davy, E., Capparelli, C., Eli, A., Qian, Y.X., Kaufman, S., Sarosi, I., Shalhoub, V., Senaldi, G., Guo, J., Delaney, J., Boyle, W.J. Cell (1998) [Pubmed]
  13. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Ducy, P., Zhang, R., Geoffroy, V., Ridall, A.L., Karsenty, G. Cell (1997) [Pubmed]
  14. The acute promyelocytic leukemia-specific PML-RAR alpha fusion protein inhibits differentiation and promotes survival of myeloid precursor cells. Grignani, F., Ferrucci, P.F., Testa, U., Talamo, G., Fagioli, M., Alcalay, M., Mencarelli, A., Grignani, F., Peschle, C., Nicoletti, I. Cell (1993) [Pubmed]
  15. Proliferation-dependent HIV-1 infection of monocytes occurs during differentiation into macrophages. Schuitemaker, H., Kootstra, N.A., Koppelman, M.H., Bruisten, S.M., Huisman, H.G., Tersmette, M., Miedema, F. J. Clin. Invest. (1992) [Pubmed]
  16. Metabolites of vitamin D in human vitamin-D deficiency: effect of vitamin D3 or 1,25-dihydroxycholecalciferol. Papapoulos, S.E., Clemens, T.L., Fraher, L.J., Gleed, J., O'Riordan, J.L. Lancet (1980) [Pubmed]
  17. Paradoxically decreased aortic wall stiffness in response to vitamin D3-induced calcinosis. A biphasic analysis of segmental elastic properties in conscious dogs. Cabrera Fischer, E.I., Armentano, R.L., Levenson, J., Barra, J.G., Morales, M.C., Breitbart, G.J., Pichel, R.H., Simon, A. Circ. Res. (1991) [Pubmed]
  18. Induction of a functional vitamin D receptor in all-trans-retinoic acid-induced monocytic differentiation of M2-type leukemic blast cells. Manfredini, R., Trevisan, F., Grande, A., Tagliafico, E., Montanari, M., Lemoli, R., Visani, G., Tura, S., Ferrari, S., Ferrari, S. Cancer Res. (1999) [Pubmed]
  19. Antiproliferative responses to two human colon cancer cell lines to vitamin D3 are differently modified by 9-cis-retinoic acid. Kane, K.F., Langman, M.J., Williams, G.R. Cancer Res. (1996) [Pubmed]
  20. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Umesono, K., Murakami, K.K., Thompson, C.C., Evans, R.M. Cell (1991) [Pubmed]
  21. Vitamin D receptor genotypes in primary hyperparathyroidism. Carling, T., Kindmark, A., Hellman, P., Lundgren, E., Ljunghall, S., Rastad, J., Akerström, G., Melhus, H. Nat. Med. (1995) [Pubmed]
  22. Control of the peroxisomal beta-oxidation pathway by a novel family of nuclear hormone receptors. Dreyer, C., Krey, G., Keller, H., Givel, F., Helftenbein, G., Wahli, W. Cell (1992) [Pubmed]
  23. 1,25-dihydroxyvitamin D3: a novel immunoregulatory hormone. Tsoukas, C.D., Provvedini, D.M., Manolagas, S.C. Science (1984) [Pubmed]
  24. Vitamin D3-induced calcium binding protein in bone tissue. Christakos, S., Norman, A.W. Science (1978) [Pubmed]
  25. Transcriptional activation of the Cdk inhibitor p21 by vitamin D3 leads to the induced differentiation of the myelomonocytic cell line U937. Liu, M., Lee, M.H., Cohen, M., Bommakanti, M., Freedman, L.P. Genes Dev. (1996) [Pubmed]
  26. Synergistic induction of HL60 cell differentiation by ketoconazole and 1-desoxy analogues of vitamin D3. Wang, X., Gardner, J.P., Kheir, A., Uskokovic, M.R., Studzinski, G.P. J. Natl. Cancer Inst. (1997) [Pubmed]
  27. Neuroendocrinology of the skin. Slominski, A., Wortsman, J. Endocr. Rev. (2000) [Pubmed]
  28. Parathyroid hormone and 25-hydroxy vitamin D3: synergistic and antagonistic effects on renal phosphate transport. Puschett, J.B., Beck, W.S. Science (1975) [Pubmed]
  29. 1,25-dihydroxyvitamin D-responsive element and glucocorticoid repression in the osteocalcin gene. Morrison, N.A., Shine, J., Fragonas, J.C., Verkest, V., McMenemy, M.L., Eisman, J.A. Science (1989) [Pubmed]
  30. Human plasma transport of vitamin D after its endogenous synthesis. Haddad, J.G., Matsuoka, L.Y., Hollis, B.W., Hu, Y.Z., Wortsman, J. J. Clin. Invest. (1993) [Pubmed]
  31. Synergistic decrease of clonal proliferation, induction of differentiation, and apoptosis of acute promyelocytic leukemia cells after combined treatment with novel 20-epi vitamin D3 analogs and 9-cis retinoic acid. Elstner, E., Linker-Israeli, M., Le, J., Umiel, T., Michl, P., Said, J.W., Binderup, L., Reed, J.C., Koeffler, H.P. J. Clin. Invest. (1997) [Pubmed]
  32. Vitamin D3 induces autophagy of human myeloid leukemia cells. Wang, J., Lian, H., Zhao, Y., Kauss, M.A., Spindel, S. J. Biol. Chem. (2008) [Pubmed]
  33. Role of promyelocytic leukemia (PML) protein in tumor suppression. Rego, E.M., Wang, Z.G., Peruzzi, D., He, L.Z., Cordon-Cardo, C., Pandolfi, P.P. J. Exp. Med. (2001) [Pubmed]
  34. Apoptosis inhibitory activity of cytoplasmic p21(Cip1/WAF1) in monocytic differentiation. Asada, M., Yamada, T., Ichijo, H., Delia, D., Miyazono, K., Fukumuro, K., Mizutani, S. EMBO J. (1999) [Pubmed]
  35. Human TAF(II28) promotes transcriptional stimulation by activation function 2 of the retinoid X receptors. May, M., Mengus, G., Lavigne, A.C., Chambon, P., Davidson, I. EMBO J. (1996) [Pubmed]
  36. Identification of a DNA sequence responsible for binding of the 1,25-dihydroxyvitamin D3 receptor and 1,25-dihydroxyvitamin D3 enhancement of mouse secreted phosphoprotein 1 (SPP-1 or osteopontin) gene expression. Noda, M., Vogel, R.L., Craig, A.M., Prahl, J., DeLuca, H.F., Denhardt, D.T. Proc. Natl. Acad. Sci. U.S.A. (1990) [Pubmed]
  37. A pathway for the metabolism of vitamin D3: unique hydroxylated metabolites formed during catalysis with cytochrome P450scc (CYP11A1). Guryev, O., Carvalho, R.A., Usanov, S., Gilep, A., Estabrook, R.W. Proc. Natl. Acad. Sci. U.S.A. (2003) [Pubmed]
  38. 25-hydroxycholecalciferol stimulation of muscle metabolism. Birge, S.J., Haddad, J.G. J. Clin. Invest. (1975) [Pubmed]
  39. The effect of hepatectomy on the synthesis of 25-hydroxyvitamin D3. Olson, E.B., Knutson, J.C., Bhattacharyya, M.H., DeLuca, H.F. J. Clin. Invest. (1976) [Pubmed]
  40. Characterization of a vitamin D3-resistant human chronic myelogenous leukemia cell line. Lasky, S.R., Posner, M.R., Iwata, K., Santos-Moore, A., Yen, A., Samuel, V., Clark, J., Maizel, A.L. Blood (1994) [Pubmed]
  41. Deglycosylation of serum vitamin D3-binding protein leads to immunosuppression in cancer patients. Yamamoto, N., Naraparaju, V.R., Asbell, S.O. Cancer Res. (1996) [Pubmed]
 
WikiGenes - Universities