The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2.

Discoidin domain receptor 2 (DDR2) is a tyrosine kinase receptor expressed in mesenchymal tissues, the ligand of which is fibrillar collagen. We have compared DDR2 signaling in skin fibroblasts derived from DDR2(-/-) and DDR2(+/-) mice. Proliferation of DDR2(-/-) fibroblasts was significantly decreased compared with DDR2(+/-) cells. DDR2(-/-) fibroblasts exhibited markedly impaired capacity to migrate through a reconstituted basement membrane (Matrigel) in response to a chemotactic stimulus, which correlated with diminished matrix metalloproteinase-2 (MMP-2) activity by gelatin zymography and diminished MMP-2 transcription of a minimal MMP-2 promoter. In contrast, a lack of DDR2 had no effect on cell motility or alpha-smooth muscle actin or vinculin expression. Additionally, expression of type I collagen was greatly reduced in DDR2(-/-) cells. Stable reconstitution of either wild-type DDR2 or constitutively active chimeric DDR2 in DDR2(-/-) cells by retroviral infection restored cell proliferation, migration through a reconstituted basement membrane (Matrigel), and MMP-2 levels to those of DDR2(+/-) fibroblasts. These data establish a role for DDR2 in critical events during wound repair.[1]

References

  1. Discoidin domain receptor 2 regulates fibroblast proliferation and migration through the extracellular matrix in association with transcriptional activation of matrix metalloproteinase-2. Olaso, E., Labrador, J.P., Wang, L., Ikeda, K., Eng, F.J., Klein, R., Lovett, D.H., Lin, H.C., Friedman, S.L. J. Biol. Chem. (2002) [Pubmed]
 
WikiGenes - Universities