The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Biochemical characterization and purification of a binding protein for 24,25-dihydroxyvitamin D3 from chick intestine.

An earlier study revealed that 24R,25-dihydroxyvitamin D(3) (24R,25(OH)(2)D(3)) inhibits the rapid actions of 1,25(OH)(2)D(3) on stimulation of calcium transport in perfused duodena, as well as activation of protein kinases C and A. In the present work, a specific binding protein (24,25-BP) has been identified and partially characterized. Percoll-gradient resolution of differential centrifugation fractions from mucosal homogenates revealed the highest levels of specific [(3)H]24R,25(OH)(2)D(3) binding to be in lysosomes (approximately eight to tenfold greater than in basal lateral membrane fractions). Incubation of isolated enterocytes with 6.5 nM [(3)H]24R,25(OH)(2)D(3) for 10 s also demonstrated targeting of the steroid to lysosomal fractions. Using freshly isolated lysosomal fractions, time course studies indicated maximal specific binding after a 2-h incubation on ice. Western analyses revealed that the serum transport protein, DBP (vitamin D binding protein), was absent from both lysosomal and basal lateral membrane fractions. Protein dependence studies demonstrated linear binding between 0.05 and 0.155 mg of lysosomal protein. Saturation analyses yielded K(d)=7.4+/- 1.8 nM, B(max)=142+/-16 fmol/mg protein for lysosomes, and K(d)=8.5 nM, B(max)=149+/-25 fmol/mg protein for basal lateral membranes. Hill analyses of lysosomal binding yielded a Hill coefficient of 0.57+/-0.11, indicative of negative cooperativity. Studies with lysosomal proteins revealed a 81%+/-7% competition of 24S,25(OH)(2)D(3) with [(3)H]24R,25(OH)(2)D(3) for binding (P>0.05, relative to competition with 24R,25(OH)(2)D(3)), while 25(OH)D(3) and 1,25(OH)(2)D(3) yielded 53%+/-13% and 39%+/-11% competition respectively (each, P<0.05, relative to competition with 24R,25(OH)(2)D(3)). The apparent affinity of 24S,25(OH)(2)D(3) for 24,25-BP led to testing of the metabolites effectiveness in the perfused duodenal loop system. Vascular perfusion with 130 pM 1,25(OH)(2)D(3) stimulated (45)Ca transport to 2.5-fold above control levels after 40 min, while simultaneous perfusion with 6.5 nM 24S,25(OH)(2)D(3) and 130 pM 1,25(OH)(2)D(3) abolished the stimulatory activity completely. Purification of the 24,25-BP by chromatography revealed a single protein band upon SDS-PAGE and silver staining of 66 kDa. The combined results suggest that 24R,25(OH)(2)D(3) may mediate its hormonal activities through a specific binding protein.[1]

References

  1. Biochemical characterization and purification of a binding protein for 24,25-dihydroxyvitamin D3 from chick intestine. Nemere, I., Yazzie-Atkinson, D., Johns, D.O., Larsson, D. J. Endocrinol. (2002) [Pubmed]
 
WikiGenes - Universities