TNFalpha inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways.
Cachexia is associated with poor prognosis in patients with chronic disease. Tumor necrosis factor-alpha (TNFalpha) plays a pivotal role in mediating cachexia and has been demonstrated to inhibit skeletal muscle differentiation in vitro. It has been proposed that TNFalpha- mediated activation of NFkappaB leads to down regulation of MyoD, however the mechanisms underlying TNFalpha effects on skeletal muscle remain poorly understood. We report here a novel pathway by which TNFalpha inhibits muscle differentiation through activation of caspases in the absence of apoptosis. TNFalpha- mediated caspase activation and block of differentiation are dependent upon the expression of PW1, but occur independently of NFkappaB activation. PW1 has been implicated previously in p53-mediated cell death and can induce bax translocation to the mitochondria. We show that bax-deficient myoblasts do not activate caspases and differentiate in the presence of TNFalpha, highlighting a role for bax-dependent caspase activation in mediating TNFalpha effects. Taken together, our data reveal that TNFalpha inhibits myogenesis by recruiting components of apoptotic pathways through PW1.[1]References
- TNFalpha inhibits skeletal myogenesis through a PW1-dependent pathway by recruitment of caspase pathways. Coletti, D., Yang, E., Marazzi, G., Sassoon, D. EMBO J. (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg