The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Thyroid hormones promote chondrocyte differentiation in mouse ATDC5 cells and stimulate endochondral ossification in fetal mouse tibias through iodothyronine deiodinases in the growth plate.

Thyroid hormones (THs), 3,3',5-triiodo-L-thyronine (T3) and L-thyroxine (T4), are important for the normal development of the growth plate (GP); congenital TH deficiency leads to severe dwarfism. In mouse chondrogenic cell line, ATDC5, T3 enhanced differentiation and increased Alizarin red staining, but did not affect Alcian blue staining. In organ-cultured mouse tibias, THs stimulated the cartilage growth, especially in the hypertrophic zone. Interestingly, T4 was as equally potent as T3 in organ-cultured tibias, which suggests that T4 is metabolized locally to T3, because T4 is a prohormone and must be converted to T3 for its activity. Two enzymes catalyze the conversion; type I deiodinase ( D1) and type II deiodinase (D2). D1 has a ubiquitous distribution and D2, with a high affinity for T4, is present where the maintenance of intracellular T3 concentration is critical. Messenger RNAs (mRNAs) for D1 and D2 were detected in neonatal mouse tibias and ATDC5 cells. The enzyme activity was unaffected by the D1 inhibitor 6-propyl-2-thiouracil, suggesting that D2 mainly catalyzes the reaction. D2 mRNA was detected in differentiated ATDC5 cells. In organ-cultured mouse tibias, D2 activity was greater at later stages. In contrast, thyroid hormone receptors (TRs) were expressed in neonatal mouse tibias and ATDC5 cells, but their expression levels in ATDC5 cells were stable throughout the culture periods. Therefore, increased T3 production at later stages by D2 is likely to contribute to the preferential effects of THs in the terminal differentiation of GP. This article is the first to show that T4 is activated locally in GP and enhances the understanding of TH effects in GP.[1]

References

 
WikiGenes - Universities