The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
Chemical Compound Review

Az-R     3,4-dihydroxy-9,10-dioxo- anthracene-2...

Synonyms: Alizarine S, Alizarin S, Alizarin Red S, Fenakrom Red W, Diamond Red W, ...
Welcome! If you are familiar with the subject of this article, you can contribute to this open access knowledge base by deleting incorrect information, restructuring or completely rewriting any text. Read more.

Disease relevance of Alizarine S


High impact information on Alizarine S

  • TSP3-null mice are viable and fertile and show normal prenatal skeletal patterning, based on Alcian blue/Alizarin red S staining [6].
  • Particularly striking was the mineralization of vibrissae, as confirmed by von Kossa and alizarin red stains [7].
  • Alizarin red and Alcian blue whole mount analysis of the skeletons from wild-type, Akp2-/-, and [Akp2-/-; Enpp1-/-] mice revealed that although calvarium and vertebrae of double-knockout mice were normalized with respect to mineral deposition, the femur and tibia were not [8].
  • Overexpression of the two isoforms induced rapid and marked osteoblast differentiation, with Til-1 being more effective in vitro, by examination of the alkaline phosphatase activity, calcium content, and Alizarin red staining [9].
  • In studies of osteogenesis, the rate of alizarin red-positive colonies was highest in bone marrow-, synovium-, and periosteum-derived cells [10].

Chemical compound and disease context of Alizarine S


Biological context of Alizarine S


Anatomical context of Alizarine S

  • Alizarin red S staining as a screening test to detect calcium compounds in synovial fluid [1].
  • The present studies show for the first time that demineralized bone re-calcifies rapidly when incubated at 37 degrees C in rat serum: re-calcification can be demonstrated by Alizarin Red and von Kossa stains, by depletion of serum calcium, and by uptake of calcium and phosphate by bone matrix [19].
  • When we compared ATDC5 cells transfected with Cst10 cDNA with cells transfected with a mock vector, hypertrophic maturation and mineralization of chondrocytes were promoted by Cst10 gene overexpression in that type X collagen expression was observed earlier, and alizarin red staining was stronger [20].
  • In mouse chondrogenic cell line, ATDC5, T3 enhanced differentiation and increased Alizarin red staining, but did not affect Alcian blue staining [21].
  • Although apparently normal at birth, Alizarin red staining of null mutant mice showed a reduced calcified area at the frontal suture that caused a round-shaped calvaria with increasing animal age to 3 months [22].

Associations of Alizarine S with other chemical compounds

  • Complete labeling of 1 mCi Ga-68 was achieved by 100 micrograms of each compound, amounts that are without any known measurable harm to humans (LD50 alizarin red S for i.v. injected mice = 70 mg/kg (8); LD50 alizarin for i.p. injected mice > 120 mg/kg (18)) [23].
  • Rats treated with vitamin D alone and examined at d 4 had extensive Alizarin red staining for calcification in the aorta, the carotid, hepatic, mesenteric, renal and femoral arteries, kidneys and lungs, whereas rats treated with vitamin D plus ibandronate had no evidence for calcification at any of these tissues when examined at d 7 and 10 [24].
  • A method has been developed wherein diseased-host penetrating keratoplasty specimens are maintained postoperatively in McCarey-Kaufman medium and are thereafter stained as whole mounts with alizarin red S and trypan blue to evaluate the status of the endothelial monolayer [25].
  • For morphological analysis of bone mineralization, 3 rats from each group were given calcein and alizarin red injected at different time points up to 14 weeks [26].
  • Following treatment with ascorbate, beta-glycerophosphate, dexamethasone, and 1,25 dihydroxy vitamin D(3), adipose tissue-derived stromal cells mineralize their extracellular matrix based on detection of calcium phosphate deposits using Alizarin Red and von Kossa histochemical stains [27].

Gene context of Alizarine S


Analytical, diagnostic and therapeutic context of Alizarine S


  1. Alizarin red S staining as a screening test to detect calcium compounds in synovial fluid. Paul, H., Reginato, A.J., Schumacher, H.R. Arthritis Rheum. (1983) [Pubmed]
  2. Leptin is expressed in and secreted from primary cultures of human osteoblasts and promotes bone mineralization. Reseland, J.E., Syversen, U., Bakke, I., Qvigstad, G., Eide, L.G., Hjertner, O., Gordeladze, J.O., Drevon, C.A. J. Bone Miner. Res. (2001) [Pubmed]
  3. Growth retardation induced in rat fetuses by maternal fasting and massive doses of ergocalciferol. Ariyuki, F. J. Nutr. (1987) [Pubmed]
  4. Chronological alterations of neurofilament 150 immunoreactivity in the gerbil hippocampus and dentate gyrus after transient forebrain ischemia. Hwang, I.K., Do, S.G., Yoo, K.Y., Kim, D.S., Cho, J.H., Kwon, Y.G., Lee, J.Y., Oh, Y.S., Kang, T.C., Won, M.H. Brain Res. (2004) [Pubmed]
  5. gamma-Hexachlorocyclohexane inhibition of the calcium fluxes at the desensitized mouse neuromuscular junction. Lievremont, M., Barnier, J.V., Potus, J. Toxicol. Appl. Pharmacol. (1984) [Pubmed]
  6. Mice with a disruption of the thrombospondin 3 gene differ in geometric and biomechanical properties of bone and have accelerated development of the femoral head. Hankenson, K.D., Hormuzdi, S.G., Meganck, J.A., Bornstein, P. Mol. Cell. Biol. (2005) [Pubmed]
  7. Targeted ablation of the abcc6 gene results in ectopic mineralization of connective tissues. Klement, J.F., Matsuzaki, Y., Jiang, Q.J., Terlizzi, J., Choi, H.Y., Fujimoto, N., Li, K., Pulkkinen, L., Birk, D.E., Sundberg, J.P., Uitto, J. Mol. Cell. Biol. (2005) [Pubmed]
  8. Sustained osteomalacia of long bones despite major improvement in other hypophosphatasia-related mineral deficits in tissue nonspecific alkaline phosphatase/nucleotide pyrophosphatase phosphodiesterase 1 double-deficient mice. Anderson, H.C., Harmey, D., Camacho, N.P., Garimella, R., Sipe, J.B., Tague, S., Bi, X., Johnson, K., Terkeltaub, R., Millán, J.L. Am. J. Pathol. (2005) [Pubmed]
  9. Strong and rapid induction of osteoblast differentiation by Cbfa1/Til-1 overexpression for bone regeneration. Kojima, H., Uemura, T. J. Biol. Chem. (2005) [Pubmed]
  10. Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Sakaguchi, Y., Sekiya, I., Yagishita, K., Muneta, T. Arthritis Rheum. (2005) [Pubmed]
  11. Semi-quantitative fluorescence analysis of calcein binding as a measurement of in vitro mineralization. Hale, L.V., Ma, Y.F., Santerre, R.F. Calcif. Tissue Int. (2000) [Pubmed]
  12. Surgical anatomy of the innervation of pylorus in human and Suncus murinus, in relation to surgical technique for pylorus-preserving pancreaticoduodenectomy. Yi, S.Q., Ru, F., Ohta, T., Terayama, H., Naito, M., Hayashi, S., Buhe, S., Yi, N., Miyaki, T., Tanaka, S., Itoh, M. World J. Gastroenterol. (2006) [Pubmed]
  13. Rapid detection of ringed sideroblasts in erythremic myelosis. Kass, L. Archives of pathology. (1975) [Pubmed]
  14. Rapidly forming apatitic mineral in an osteoblastic cell line (UMR 106-01 BSP). Stanford, C.M., Jacobson, P.A., Eanes, E.D., Lembke, L.A., Midura, R.J. J. Biol. Chem. (1995) [Pubmed]
  15. Retarded skeletal development in transgenic mice with a type II collagen mutation. Savontaus, M., Metsranta, M., Vuorio, E. Am. J. Pathol. (1996) [Pubmed]
  16. Osteoclast deficiency results in disorganized matrix, reduced mineralization, and abnormal osteoblast behavior in developing bone. Dai, X.M., Zong, X.H., Akhter, M.P., Stanley, E.R. J. Bone Miner. Res. (2004) [Pubmed]
  17. Strong static magnetic field stimulates bone formation to a definite orientation in vitro and in vivo. Kotani, H., Kawaguchi, H., Shimoaka, T., Iwasaka, M., Ueno, S., Ozawa, H., Nakamura, K., Hoshi, K. J. Bone Miner. Res. (2002) [Pubmed]
  18. Resetting the problem of cell death following muscle-derived cell transplantation: detection, dynamics and mechanisms. Skuk, D., Caron, N.J., Goulet, M., Roy, B., Tremblay, J.P. J. Neuropathol. Exp. Neurol. (2003) [Pubmed]
  19. Evidence for a serum factor that initiates the re-calcification of demineralized bone. Price, P.A., June, H.H., Hamlin, N.J., Williamson, M.K. J. Biol. Chem. (2004) [Pubmed]
  20. Cystatin 10, a novel chondrocyte-specific protein, may promote the last steps of the chondrocyte differentiation pathway. Koshizuka, Y., Yamada, T., Hoshi, K., Ogasawara, T., Chung, U.I., Kawano, H., Nakamura, Y., Nakamura, K., Ikegawa, S., Kawaguchi, H. J. Biol. Chem. (2003) [Pubmed]
  21. Thyroid hormones promote chondrocyte differentiation in mouse ATDC5 cells and stimulate endochondral ossification in fetal mouse tibias through iodothyronine deiodinases in the growth plate. Miura, M., Tanaka, K., Komatsu, Y., Suda, M., Yasoda, A., Sakuma, Y., Ozasa, A., Nakao, K. J. Bone Miner. Res. (2002) [Pubmed]
  22. Targeted disruption of cadherin-11 leads to a reduction in bone density in calvaria and long bone metaphyses. Kawaguchi, J., Azuma, Y., Hoshi, K., Kii, I., Takeshita, S., Ohta, T., Ozawa, H., Takeichi, M., Chisaka, O., Kudo, A. J. Bone Miner. Res. (2001) [Pubmed]
  23. Liver and kidney imaging with Ga-68-labeled dihydroxyanthraquinones. Schuhmacher, J., Maier-Borst, W., Wellman, H.N. J. Nucl. Med. (1980) [Pubmed]
  24. The amino bisphosphonate ibandronate prevents vitamin D toxicity and inhibits vitamin D-induced calcification of arteries, cartilage, lungs and kidneys in rats. Price, P.A., Buckley, J.R., Williamson, M.K. J. Nutr. (2001) [Pubmed]
  25. Supravital and vital staining of diseased corneal endothelium in whole-mount preparations. Gibralter, R., Jakobiec, F.A. Arch. Ophthalmol. (1982) [Pubmed]
  26. Differential bone turnover in an angulated fracture model in the rat. Li, J., Ahmad, T., Bergström, J., Samnegård, E., Erlandsson-Harris, H., Ahmed, M., Kreicbergs, A. Calcif. Tissue Int. (2004) [Pubmed]
  27. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Halvorsen, Y.D., Franklin, D., Bond, A.L., Hitt, D.C., Auchter, C., Boskey, A.L., Paschalis, E.P., Wilkison, W.O., Gimble, J.M. Tissue engineering. (2001) [Pubmed]
  28. Reduced expression of thrombospondins and craniofacial dysmorphism in mice overexpressing fra1. Nishiwaki, T., Yamaguchi, T., Zhao, C., Amano, H., Kurt, D.H., Bornstein, P., Toyama, Y., Matsuo, K. J. Bone Miner. Res. (2006) [Pubmed]
  29. Inhibition of osteoblast differentiation but not adipocyte differentiation of mesenchymal stem cells by sera obtained from aged females. Abdallah, B.M., Haack-Sørensen, M., Fink, T., Kassem, M. Bone (2006) [Pubmed]
  30. Differential growth factor control of bone formation through osteoprogenitor differentiation. Chaudhary, L.R., Hofmeister, A.M., Hruska, K.A. Bone (2004) [Pubmed]
  31. Inhibitory helix-loop-helix transcription factors Id1/Id3 promote bone formation in vivo. Maeda, Y., Tsuji, K., Nifuji, A., Noda, M. J. Cell. Biochem. (2004) [Pubmed]
  32. Mutation in type II collagen gene disturbs spinal development and gene expression patterns in transgenic Del1 mice. Savontaus, M., Metsäranta, M., Vuorio, E. Lab. Invest. (1997) [Pubmed]
  33. Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. Anderson, H.C., Sipe, J.B., Hessle, L., Dhanyamraju, R., Atti, E., Camacho, N.P., Millán, J.L., Dhamyamraju, R. Am. J. Pathol. (2004) [Pubmed]
  34. Inhibition of matrix metalloproteinase activity attenuates tenascin-C production and calcification of implanted purified elastin in rats. Vyavahare, N., Jones, P.L., Tallapragada, S., Levy, R.J. Am. J. Pathol. (2000) [Pubmed]
  35. Synovial fluid collagenase in patients with destructive arthritis of the shoulder joint. Dieppe, P.A., Cawston, T., Mercer, E., Campion, G.V., Hornby, J., Hutton, C.W., Doherty, M., Watt, I., Woolf, A.D., Hazleman, B. Arthritis Rheum. (1988) [Pubmed]
  36. Temporal changes of mRNA expression of matrix proteins and parathyroid hormone and parathyroid hormone-related protein (PTH/PTHrP) receptor in bone development. Kondo, H., Ohyama, T., Ohya, K., Kasugai, S. J. Bone Miner. Res. (1997) [Pubmed]
  37. Isolation and characterization of osteogenic cells derived from first bone of the embryonic tibia. Syftestad, G.T., Weitzhandler, M., Caplan, A.I. Dev. Biol. (1985) [Pubmed]
WikiGenes - Universities