The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

The role of cytokines in physiological sleep regulation.

Several growth factors (GFs) are implicated in sleep regulation. It is posited that these GFs are produced in response to neural activity and affect input-output relationships within the neural circuits where they are produced, thereby inducing a local state shift. These GFs also influence synaptic efficacy. All the GFs currently identified as sleep regulatory substances are also implicated in synaptic plasticity. Among these substances, the most extensively studied for their role in sleep regulation are interleukin-1beta ( IL-1) and tumor necrosis factor alpha (TNF). Injection of IL-1 or TNF enhances non-rapid eye movement sleep (NREMS). Inhibition of either IL-1 or TNF inhibits spontaneous sleep and the sleep rebound that occurs after sleep deprivation. Stimulation of the endogenous production of IL-1 and TNF enhances NREMS. Brain levels of IL-1 and TNF correlate with sleep propensity; for example, after sleep deprivation, their levels increase. IL-1 and TNF are part of a complex biochemical cascade regulating sleep. Downstream events include nitric oxide, growth hormone releasing hormone, nerve growth factor, nuclear factor kappa B, and possibly adenosine and prostaglandins. Endogenous substances moderating the effects of IL-1 and TNF include anti-inflammatory cytokines such as IL-4, IL-10, and IL-13. Clinical conditions altering IL-1 or TNF activity are associated with changes in sleep, for example, infectious disease and sleep apnea. As our knowledge of the biochemical regulation of sleep progresses, our understanding of sleep function and of many clinical conditions will improve.[1]

References

  1. The role of cytokines in physiological sleep regulation. Krueger, J.M., Obál, F.J., Fang, J., Kubota, T., Taishi, P. Ann. N. Y. Acad. Sci. (2001) [Pubmed]
 
WikiGenes - Universities