Cnd2 has dual roles in mitotic condensation and interphase.
Chromosome condensation requires condensin, which comprises five subunits. Two of these subunits--both being structural maintenance of chromosome (SMC) proteins-are coiled-coils with globular terminal domains that interact with ATP and DNA. The remaining three, non-SMC subunits also have essential, albeit undefined, roles in condensation. Here we report that Cnd2 ( ref. 6), a non-SMC subunit of fission yeast similar to Drosophila Barren and the budding yeast protein Brn1 (refs 8, 9), is required for both interphase and mitotic condensation. In cnd2-1 mutants, ultraviolet-induced DNA damage is not repaired, and cells arrested by hydroxyurea do not recover. A definitive defect of interphase is abolishment of Cds1 (a checkpoint kinase) activation in the presence of hydroxyurea in both cnd2-1 mutant cells and in cells where other condensin subunits have been genetically disrupted. In the absence of hydroxyurea, a G2 checkpoint delay occurred in cnd2-1 mutants in a manner dependent on Cds1 and ATM-like Rad3, but not Chk1 (refs 10-13), before the mitotic condensation defect. Furthermore, cnd2-1 was synthetic-lethal with mutations of excision repair, RecQ helicase and DNA replication enzymes. These interphase and mitotic defects provide insight into the mechanistic role of non-SMC subunits that interact with the globular SMC domains in the heteropentameric holocomplex.[1]References
- Cnd2 has dual roles in mitotic condensation and interphase. Aono, N., Sutani, T., Tomonaga, T., Mochida, S., Yanagida, M. Nature (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg