The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 Edgar,  
 

Molecular cloning and tissue distribution of mammalian L-threonine 3-dehydrogenases.

BACKGROUND: In mammals, L-threonine is an indispensable amino acid. The conversion of L-threonine to glycine occurs through a two-step biochemical pathway involving the enzymes L-threonine 3-dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase. The L-threonine 3-dehydrogenase enzyme has been purified and characterised, but the L-threonine 3-dehydrogenase gene has not previously been identified in mammals. RESULTS: Transcripts for L-threonine 3-dehydrogenase from both the mouse and pig are reported. The ORFs of both L-threonine dehydrogenase cDNAs encode proteins of 373 residues (41.5 kDa) and they share 80% identity. The mouse gene is located on chromosome 14, band C. The amino-terminal regions of these proteins have characteristics of a mitochondrial targeting sequence and are related to the UDP-galactose 4-epimerases, with both enzyme families having an amino-terminal NAD+ binding domain. That these cDNAs encode threonine dehydrogenases was shown, previously, by tiling 13 tryptic peptide sequences, obtained from purified L-threonine dehydrogenase isolated from porcine liver mitochondria, on to the pig ORF. These eukaryotic L-threonine dehydrogenases also have significant similarity with the prokaryote L-threonine dehydrogenase amino-terminus peptide sequence of the bacterium, Clostridium sticklandii. In murine tissues, the expression of both L-threonine dehydrogenase and 2-amino-3-ketobutyrate coenzyme A ligase mRNAs were highest in the liver and were also present in brain, heart, kidney, liver, lung, skeletal muscle, spleen and testis. CONCLUSIONS: The first cloning of transcripts for L-threonine dehydrogenase from eukaryotic organisms are reported. However, they do not have any significant sequence homology to the well-characterised Escherichia coli L-threonine dehydrogenase.[1]

References

 
WikiGenes - Universities