The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Pharmacological characterization of the chemokine receptor, hCCR1 in a stable transfectant and differentiated HL-60 cells: antagonism of hCCR1 activation by MIP-1beta.

C-C chemokine receptor-1 ( CCR1) has been implicated in mediating a variety of inflammatory conditions including multiple sclerosis and organ rejection. Although originally referred to as the MIP-1alpha/ RANTES receptor, CCR1 is quite promiscuous and can be activated by numerous chemokines. We used radioligand binding and [35S]-GTPgammaS exchange assays in membranes from a cell line transfected to express CCR1 (Ba/F3-hCCR1) to characterize a panel of chemokines (HCC-1, MIP-1alpha, MIP-1beta, MIP-1delta, MPIF-1, MCP-2, MCP-3, and RANTES) as CCR1 ligands. In this recombinant model, these chemokines displaced 125I-MIP-1alpha with a wide range of potencies and, with the exception of MCP-2, acted as full agonists in stimulating [35S]-GTPgammaS exchange. We then assessed the utility of HL-60 cells cultured with known differentiating agents (PMA, DMSO, dibutyryl-cAMP or retinoic acid) for investigating CCR1 pharmacology. In [35S]-GTPgammaS exchange assays, membranes from cells cultured with retinoic acid (4-6 days) were the most responsive to activation by MIP-1alpha and MPIF-1. FACS analysis and comparative pharmacology confirmed that these activities were mediated by CCR1. Using [35S]-GTPgammaS exchange assays, intracellular calcium flux and/or whole cell chemotaxis assays in HL-60(Rx) cells, we validated that MIP-1alpha was the most potent CCR1 ligand (MIP-1alpha>MPIF-1>RANTES>or=MIP-1beta) although the ligands differed in their efficacy as agonists. MPIF-1 was the more efficacious (MPIF-1>RANTES=MIP-1alpha>>MIP-1beta). 125I-MIP-1beta binding in Ba/F3-hCCR1 and HL-60(Rx) membranes was competitively displaced by MIP-1alpha, MPIF-1 and MIP-1beta. The binding K(i) for these chemokines with 125I-MIP-1beta were essentially identical in the two membrane systems. Lastly, MIP-1beta antagonized [35S]-GTPgammaS exchange, Ca2+ flux and chemotaxis in HL-60(Rx) cells in response to robust agonists such as MIP-1alpha, RANTES and MPIF-1. Based on our results, we propose that MIP-1beta could function as an endogenous inhibitor of CCR1 function.[1]

References

  1. Pharmacological characterization of the chemokine receptor, hCCR1 in a stable transfectant and differentiated HL-60 cells: antagonism of hCCR1 activation by MIP-1beta. Chou, C.C., Fine, J.S., Pugliese-Sivo, C., Gonsiorek, W., Davies, L., Deno, G., Petro, M., Schwarz, M., Zavodny, P.J., Hipkin, R.W. Br. J. Pharmacol. (2002) [Pubmed]
 
WikiGenes - Universities