The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Growth of Bacillus subtilis on citrate and isocitrate is supported by the Mg2+-citrate transporter CitM.

Bacillus subtilis 168 was assayed for its growth on tricarboxylic acid (TCA) cycle intermediates and related compounds as the sole carbon sources. Growth of the organism was supported by citrate, D-isocitrate, succinate, fumarate and L-malate, whereas no growth was observed in the presence of cis-aconitate,2-oxoglutarate, D-malate, oxaloacetate and tricarballylate. Growth of the organism on the tricarboxylates citrate and D-isocitrate required the presence of functional CitM, an Mg(2+)-citrate transporter, whereas its growth on succinate, fumarate and L-malate appeared to be CitM-independent. Interestingly, the naturally occurring enantiomer D-isocitrate was favoured over L-isocitrate by the organism. Like citrate, D-isocitrate was shown to be an inducer of citM expression in B. subtilis. The addition of 1 mM Mg(2+) to the growth medium improved growth of the organism on both citrate and D-isocitrate, suggesting that D-isocitrate was taken up by CitM in complex with divalent metal ions. Subsequently, the ability of CitM to transport D-isocitrate was demonstrated by competition experiments and by heterologous exchange in right-side-out membrane vesicles prepared from E. coli cells expressing citM. None of the other TCA cycle intermediates and related compounds tested were recognized by CitM. Uptake experiments using radioactive (63)Ni(2+) provided direct evidence that D-isocitrate is transported in complex with divalent metal ions.[1]

References

 
WikiGenes - Universities