Biochemical stabilization enhances red blood cell recovery and stability following cryopreservation.
Glycerolized red blood cells (RBC) are approved for long-term cryopreservation. However, the need to remove the glycerol cryoprotectant prior to transfusion has limited the usefulness of this cryopreservation method. This report describes using non-cryoprotectant biochemical stabilization techniques to substitute for the standard glycerol cryoprotectant. The glycerolized RBC method was compared to a newly developed LC-V method that combines transfusable cryoprotectants (hydroxyethyl starch and dextran) and specific non-cryoprotectant biochemical stabilizers (nicotinamide, nifedipine, and flurbiprofen). Results demonstrate that the biochemical stabilizers significantly reduce cryopreservation-induced hemolysis compared to cryopreservation in their absence and that thaw hemolysis levels approach those of standard 40% (w/v) glycerolized RBC (3.1+/-0.2% for 40% glycerol compared to 8.7+/-0.9% for the LC-V protocol). Furthermore, LC-V cryopreserved RBC exhibit a significantly enhanced post-thaw stability compared to glycerolized RBC as determined by osmotic fragility index (0.557+/-0.034 for 40% glycerol compared to 0.478+/-0.016 for the LC-V protocol). Analysis of biochemically stabilized RBC proteins revealed a transient translocation of carbonic anhydrase to the membrane fraction. However, the enhanced RBC recovery and stability could not be attributed to this event. Finally, DSC analysis demonstrated that the biochemical stabilizers of the LC-V process were not functioning as surrogate cryoprotectants in that they did not affect the quantity or quality of ice formed. Overall, this work demonstrates that cryopreservation-induced RBC damage may be corrected or prevented through specific biochemical stabilization and represents a significant step toward a directly transfusable cryopreserved RBC product.[1]References
- Biochemical stabilization enhances red blood cell recovery and stability following cryopreservation. Wagner, C.T., Martowicz, M.L., Livesey, S.A., Connor, J. Cryobiology (2002) [Pubmed]
Annotations and hyperlinks in this abstract are from individual authors of WikiGenes or automatically generated by the WikiGenes Data Mining Engine. The abstract is from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.About WikiGenesOpen Access LicencePrivacy PolicyTerms of Useapsburg