The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1).

Intraluminal administration of the endocannabinoids N-arachidonoyl-ethanolamine (anandamide) and 2-arachidonoylglycerol (2-AG) causes inflammation similar to that caused by Clostridium difficile toxin A in the rat ileum. The effects of anandamide and 2-AG were significantly inhibited by pretreatment with the specific capsaicin receptor (vanilloid receptor subtype 1; VR1) antagonist capsazepine. Pretreatment with the CB1 and CB2 cannabinoid receptor antagonists N-piperidino-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-3-pyrazole-carboxamide (SR141716) and N-[1S)-endo-1,3,3-trimethylbicyclo[2.2.1]heptan-2-yl]-5-(4-chloro-3-methylphenyl)-1-(4-methylbenzyl)-pyrazole-3-carboxamide (SR144528) did not affect the responses to anandamide. It has previously been shown that intraluminal toxin A stimulates substance P ( SP) release from primary sensory neurons and that pretreatment with SP receptor [neurokinin (NK)-1 receptor] antagonists inhibits the inflammatory effects of toxin A. Anandamide stimulated SP release and this was blocked by capsazepine pretreatment. Also, pretreatment with the specific NK-1 receptor antagonist (2S,3S)-3-([3,5-bis[trifluoromethyl)phenyl]methoxy)-2-phenylpiperidine (L-733,060) significantly inhibited the inflammatory effects of both toxin A and anandamide. Toxin A increased tissue concentrations of anandamide and 2-AG in the ileum, and these effects were enhanced after pretreatment with inhibitors of fatty acid amide hydrolase, a major endocannabinoid-degrading enzyme. The toxin A-stimulated release of anandamide but not 2-AG was selective over their congeners. These results demonstrate that the endocannabinoids anandamide and 2-AG stimulate intestinal primary sensory neurons via the capsaicin VR1 receptor to release SP, resulting in enteritis, and that endocannabinoids may mediate the inflammatory effects of toxin A.[1]

References

  1. Endocannabinoids induce ileitis in rats via the capsaicin receptor (VR1). McVey, D.C., Schmid, P.C., Schmid, H.H., Vigna, S.R. J. Pharmacol. Exp. Ther. (2003) [Pubmed]
 
WikiGenes - Universities