The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes.

Within the brain, quinolinic acid (QUIN) is an important neurotoxin, especially in AIDS dementia complex (ADC). Its production by monocytic lineage cells is increased in the context of inflammation. However, it is not known whether QUIN promotes inflammation. Astrocytes are important in immunoregulation within the brain and so we chose to examine the effects of QUIN on the astrocyte. Using purified primary human fetal astrocyte cultures, we determined chemokine production using ELISA assays and RT-PCR and chemokine receptor expression using immunocytochemistry and RT-PCR with QUIN in comparison to TNFalpha, IL-1beta, and IFNgamma. We found that QUIN induces astrocytes to produce large quantities of MCP-1 (CCL2) and lesser amounts of RANTES (CCL5) and IL-8 (CXCL8). QUIN also increases SDF-1alpha (CXCL12), HuMIG (CXCL9), and fractalkine (CX(3)CL1) mRNA expression. Moreover, QUIN leads to upregulation of the chemokine receptor expression of CXCR4, CCR5, and CCR3 in human fetal astrocytes. Most of these effects were comparable to those induced by TNFalpha, IL-1beta, and IFNgamma. The present work represents the first evidence that QUIN induces chemokine and chemokine receptor expression in astrocytes and is at least as potent as classical mediators such as inflammatory cytokines. These results suggest that QUIN may be critical in the amplification of brain inflammation, particularly in ADC.[1]


  1. Quinolinic acid upregulates chemokine production and chemokine receptor expression in astrocytes. Guillemin, G.J., Croitoru-Lamoury, J., Dormont, D., Armati, P.J., Brew, B.J. Glia (2003) [Pubmed]
WikiGenes - Universities