The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Role of glycosylation in the renal electrogenic Na+-HCO3- cotransporter (NBCe1).

The electrogenic Na(+)-HCO(3)(-) cotransporter NBCe1 is important for the regulation of intracellular pH (pH(i)) and for epithelial HCO(3)(-) transport in many tissues, including kidney, pancreas, and brain. In the present study, we investigate glycosylation sites in NBCe1. Treatment of rat kidney membrane extracts with peptide N-glycosidase F (PNGase F) shifted the apparent molecular weight (MW) of NBCe1 from 130 to 116, the MW predicted from the deduced amino acid sequence. Treatment with endoglycosidase F(2) or H or O-glycosidase did not affect the MW of NBCe1. Lectin-binding studies, together with the enzyme data, suggest that the N-linked carbohydrates are of tri- or tetra-antennary type. To localize glycosylation sites, we individually mutated the seven consensus N-glycosylation sites by replacing asparagine (N) with glutamine (Q) and assessing mutant transporters in Xenopus laevis oocytes. Immunoblotting of oocyte membrane extracts treated with PNGase F indicates that NBCe1 is normally glycosylated at N597 and N617 (both on the third extracellular loop). However, N592 (on the same loop) is glycosylated when the other two sites are mutated. The triple mutant (N592Q/N597Q/N617Q) is completely unglycosylated but, based on microelectrode measurements of membrane potential and pH(i) in oocytes, preserves the Na(+) and HCO(3)(-) dependence and electrogenicity of wild-type NBCe1.[1]

References

  1. Role of glycosylation in the renal electrogenic Na+-HCO3- cotransporter (NBCe1). Choi, I., Hu, L., Rojas, J.D., Schmitt, B.M., Boron, W.F. Am. J. Physiol. Renal Physiol. (2003) [Pubmed]
 
WikiGenes - Universities