The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

FOG-2 and GATA-4 Are coexpressed in the mouse ovary and can modulate mullerian-inhibiting substance expression.

Transcription factor GATA-4 has been suggested to have a role in mammalian gonadogenesis, e.g., through activation of the Müllerian-inhibiting substance (MIS) gene expression. Although the expression of GATA-4 during gonadogenesis has been elucidated in detail, very little is known about FOG-2, an essential cofactor for GATA-4, in ovarian development. We explored in detail the expression of FOG-2 and GATA-4 in the fetal and postnatal mouse ovary and in the fetal testis using Northern blotting, RNA in situ hybridization, and immunohistochemistry. GATA-4 and FOG-2 are evident in the bipotential urogenital ridge, and their expression persists in the fetal mouse ovary; this result is different from earlier reports of GATA-4 downregulation in the fetal ovary. In contrast to ovary, FOG-2 expression is lost in the fetal Sertoli cells along with the formation of the testicular cords, leading to the hypothesis that FOG-2 has a specific role in the fetal ovaries counteracting the transactivation of the MIS gene by GATA-4. In vitro transfection assays verified that FOG-2 is able to repress the effect of GATA-4 on MIS transactivation in granulosa cells. In postnatal ovary, granulosa cells of growing follicles express FOG-2, partially overlapping with the expression of MIS. These data suggest an important role for FOG-2 and the GATA transcription factors in the developing ovary.[1]


  1. FOG-2 and GATA-4 Are coexpressed in the mouse ovary and can modulate mullerian-inhibiting substance expression. Anttonen, M., Ketola, I., Parviainen, H., Pusa, A.K., Heikinheimo, M. Biol. Reprod. (2003) [Pubmed]
WikiGenes - Universities