The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation.

The fusion of vesicles in the secretory pathway involves the interaction of t-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (t-SNAREs) on the target membrane and v-SNAREs on the vesicle membrane. AtSNAP33 is an Arabidopsis homolog of the neuronal t-SNARE SNAP-25 involved in exocytosis and is localized at the cell plate and at the plasma membrane. In this paper, the expression of AtSNAP33 was analyzed after different biotic and abiotic stresses. The expression of AtSNAP33 increased after inoculation with the pathogens Plectosporium tabacinum and virulent and avirulent forms of Peronospora parasitica and Pseudomonas syringae pv tomato. The expression of PR1 transcripts encoding the secreted pathogenesis-related protein 1 also increased after inoculation with these pathogens and the expression of AtSNAP33 preceded or occurred at the same time as the expression of PR1. AtSNAP33 was also expressed in npr1 plants that do not express PR1 after pathogen inoculation as well as in cpr1 plants that overexpress PR1 in the absence of a pathogen. The level of AtSNAP33 decreased slightly in leaves inoculated with P. parasitica in the NahG plants, and eds5 and sid2 mutants that are unable to accumulate salicylic acid (SA) after pathogen inoculation, indicating a partial dependence on SA. AtSNAP33 was also expressed in systemic noninoculated leaves of plants inoculated with P. syringae. In contrast to the situation in infected leaves, the expression of AtSNAP33 in systemic leaves was fully SA dependent. Thus, the expression of AtSNAP33 after pathogen attack is regulated by SA-dependent and SA-independent pathways. Mechanical stimulation also led to an increase of AtSNAP33 transcripts.[1]

References

  1. The expression of the t-SNARE AtSNAP33 is induced by pathogens and mechanical stimulation. Wick, P., Gansel, X., Oulevey, C., Page, V., Studer, I., Dürst, M., Sticher, L. Plant Physiol. (2003) [Pubmed]
 
WikiGenes - Universities