The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Phosphorylation of threonine 10 on CKBBP1/SAG/ROC2/Rbx2 by protein kinase CKII promotes the degradation of IkappaBalpha and p27Kip1.

In eukaryotic cells, protein kinase CKII is required for progression through the cell division cycle. We recently reported that CKBBP1/SAG/ROC2/Rbx2 associates with the beta-subunit of CKII and is phosphorylated by purified CKII in the presence of ATP in vitro. In this report, we demonstrate that CKBBP1 is efficiently phosphorylated in vitro by purified CKII in the presence of GTP and by heparin-sensitive protein kinase in HeLa cell extract. Mutational analysis indicates that CKII phosphorylates threonine at residue 10 within CKBBP1. Furthermore, CKBBP1 is phosphorylated in vivo and threonine to alanine mutation at residue 10 abrogates the phosphorylation of CKBBP1 observed in vivo, indicating that CKII is a major kinase that is responsible for in vivo phosphorylation of CKBBP1. As compared with the wild-type CKBBP1 or CKBBP1T10E (in which threonine 10 is replaced by glutamate), overexpression of nonphosphorylatable CKBBP1 (CKBBP1T10A) results in accumulation of IkappaBalpha and p27Kip1. Experiments using proteasome inhibitor MG132 and CKII inhibitor 5,6-dichloro-1-beta-d-ribofuranosylbenzimidazole suggest that the accumulation of IkappaBalpha and p27Kip1 results primarily from the reduction of proteasomal degradation in cells expressing CKBBP1T10A, and that CKII- mediated CKBBP1 phosphorylation is required for efficient degradation of IkappaBalpha and p27Kip1. Overexpression of CKBBP1T10A in HeLa cells suppresses cell proliferation and causes accumulation of G1/G0 peak of the cell cycle. Taken together, our results indicate that CKII may control IkappaBalpha and p27Kip1 degradation and thereby G1/S phase transition through the phosphorylation of threonine 10 within CKBBP1.[1]


WikiGenes - Universities