The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Expression of voltage-gated chloride channels in human glioma cells.

Voltage-gated chloride channels have recently been implicated as being important for cell proliferation and invasive cell migration of primary brain tumors cells. In the present study we provide several lines of evidence that glioma Cl- currents are primarily mediated by ClC-2 and ClC-3, two genes that belong to the ClC superfamily. Transcripts for ClC-2 thru ClC-7 were detected in a human glioma cell line by PCR, whereas only ClC-2, ClC-3, and ClC-5 protein could be identified by Western blot. Prominent ClC-2, -3, and -5 channel expression was also detected in acute patient biopsies from low- and high-grade malignant gliomas. Immunogold electron microscopic studies as well as digital confocal imaging localized a portion of these ClC channels to the plasma membrane. Whole-cell patch-clamp recordings show the presence of two pharmacologically and biophysically distinct Cl- currents that could be specifically reduced by 48 hr exposure of cells to channel-specific antisense oligonucleotides. ClC-3 antisense selectively and significantly reduced the expression of outwardly rectifying current with pronounced voltage-dependent inactivation. Such currents were sensitive to DIDS (200-500 microm) and 5-nitro-2-(3-phenylpropylamino) benzoic acid (165 microm). ClC-2 antisense significantly reduced expression of inwardly rectifying currents, which were potentiated by hyperpolarizing prepulses and inhibited by Cd2+ (200-500 microm). Currents that were mediated by ClC-5 could not be demonstrated. We suggest that ClC-2 and ClC-3 channels are specifically upregulated in glioma membranes and endow glioma cells with an enhanced ability to transport Cl-. This may in turn facilitate rapid changes in cell size and shape as cells divide or invade through tortuous extracellular brain spaces.[1]


  1. Expression of voltage-gated chloride channels in human glioma cells. Olsen, M.L., Schade, S., Lyons, S.A., Amaral, M.D., Sontheimer, H. J. Neurosci. (2003) [Pubmed]
WikiGenes - Universities