The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Enzyme purification by immobilized metal ion affinity partitioning--application to D-hydroxyisocaproate dehydrogenase.

Extraction and purification of D-2-hydroxyisocaproate dehydrogenase from Lactobacillus casei has been studied by means of immobilized metal ion affinity partitioning (IMAP) in aqueous two-phase systems. The partition of the enzyme can be influenced strongly by inclusion of iminodiacetic acid as chelating ligand coupled to polyethylene glycol and loaded with Cu2+ ions into the phase system. This applies to polyethylene glycol/dextran as well as polyethylene glycol/salt phase systems. An increase in enzyme partition coefficient of up to about 1000-fold was observed. Based on the mathematic model presented recently by Suh and Arnold (1990) approximately 6.4 histidine residues were calculated to be involved in the enzyme-metal chelate complex. Direct extraction of the enzyme from both cell homogenate and cell debris supernatant proved unsatisfactory due to disturbances caused by the presence of cell debris and low molecular weight cell components. A combination with a preceding prepurification by a fractional precipitation with polyethylene glycol resulted in a strong affinity effect accompanied by an efficient purification during IMAP (purification factor of 11 with a yield of approximately 90%). Based on this step, an efficient downstream process can be designed for D-hydroxyisocaproate dehydrogenase.[1]


  1. Enzyme purification by immobilized metal ion affinity partitioning--application to D-hydroxyisocaproate dehydrogenase. Schustolla, D., Deckwer, W.D., Schügerl, K., Hustedt, H. Bioseparation (1992) [Pubmed]
WikiGenes - Universities