The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Sarcolemmal and mitochondrial effects of a KATP opener, P-1075, in "polarized" and "depolarized" Langendorff-perfused rat hearts.

We investigated consequences of cardiac arrest on sarcolemmal and mitochondrial effects of ATP-sensitive potassium channel (KATP) opener, P-1075, in Langendorff-perfused rat hearts. Depolarised cardiac arrest (24.7 mM KCl) did not affect glibenclamide-sensitive twofold activation of rubidium efflux by P-1075 (5 microM) from rubidium-loaded hearts, but eliminated uncoupling produced by P-1075 in beating hearts: 40% depletion of phosphocreatine and ATP, 50% increase in oxygen consumption, and reduction of cytochrome c oxidase. Depolarized cardiac arrest by calcium channel blocker, verapamil (5 microM), also prevented uncoupling. Lack of P-1075 mitochondrial effects in depolarized hearts was not due to changes in phosphorylation potential, because 2,4-dintrophenol (10 microM) reversed the [PCr]/[Cr] increase and Pi decrease, characteristic of KCl-arrest, but did not restore uncoupling. In agreement with this conclusion, pyruvate (5 mM) increased [PCr]/[Cr] and decreased Pi, but did not prevent uncoupling in beating hearts. A decrease in mean [Ca2+] in KCl-arrested hearts could not account for lack of P-1075 mitochondrial effects, because calcium channel opener, S-(-)-Bay K8644 (50 nM), and beta-agonist, isoproterenol (0.5 microM), did not facilitate uncoupling. In contrast, in adenosine (1 mM)-arrested hearts (polarized arrest), P-1075 caused 40% phosphocreatine and ATP depletion. In isolated rat liver mitochondria, P-1075 (20 microM) decreased mitochondrial membrane potential (DeltaPsi) by approximately 14 mV (demonstrated by redistribution of DeltaPsi-sensitive dye, rhodamine 800) in a glibenclamide-sensitive manner. We concluded that cell membrane depolarization does not prevent activation of sarcolemmal KATP by P-1075, but it plays a role in mitochondrial uncoupling effects of P-1075.[1]

References

  1. Sarcolemmal and mitochondrial effects of a KATP opener, P-1075, in "polarized" and "depolarized" Langendorff-perfused rat hearts. Jilkina, O., Kuzio, B., Grover, G.J., Folmes, C.D., Kong, H.J., Kupriyanov, V.V. Biochim. Biophys. Acta (2003) [Pubmed]
 
WikiGenes - Universities