The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer.

The mammalian homologue of Drosophila tinman, Nkx2-5, plays an early role in regulating cardiac genes and morphogenesis. Bone morphogenetic proteins (BMPs), members of the transforming growth factor (TGF)-beta family of signaling molecules, are involved in numerous developmental processes. BMP signaling is crucial in the regulation of Nkx2-5 expression and specification of the cardiac lineage. Constitutively active BMP type I receptor or the downstream pathway components and DNA-binding transcription factors, Smad1/4 directly activated Nkx2-5 gene transcription. We identified and characterized a novel upstream Nkx2-5 enhancer, composed of clustered repeats of Smad and GATA DNA binding sites. This composite Nkx2-5 enhancer was a direct target of BMP signaling via cooperative interactions between the downstream transducers Smad1/4 and GATA-4. In mammalian two hybrid assays, Smad factors recruited the hybrid gene GATA4-VP16 to strongly drive transcription of a reporter gene containing multimerized Smad binding sites These cofactors interacted through the second zinc finger and adjacent basic domain of GATA-4 and the N-terminal domain of Smads. Smad4 and GATA4 were also found to bind in vivo with the Nkx2-5 composite enhancer, as revealed by chromatin immunoprecipitation analysis of differentiated P19 cells. Finally, transgenic mice containing the Smad/GATA composite enhancer recapitulated early murine Nkx2-5 cardiac expression and deletion of this enhancer within a 10-kb transgene pBS-Nkx2-5 LacZ significantly reduced expression in the cardiac crescent. Thus, integration of GATA transcription factors with BMP signaling, through co-association with Smads factors, may initiate early Nkx2-5 expression; suggesting a vital role for the combination of these factors in the specification of cardiac progenitors.[1]

References

  1. The cardiac determination factor, Nkx2-5, is activated by mutual cofactors GATA-4 and Smad1/4 via a novel upstream enhancer. Brown, C.O., Chi, X., Garcia-Gras, E., Shirai, M., Feng, X.H., Schwartz, R.J. J. Biol. Chem. (2004) [Pubmed]
 
WikiGenes - Universities