The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 
 
 

Protein kinase C-alpha inhibits the repair of oxidative phosphorylation after S-(1,2-dichlorovinyl)-L-cysteine injury in renal cells.

Previously, we showed that physiological functions of renal proximal tubular cells (RPTC) do not recover following S-(1,2-dichlorovinyl)-l-cysteine (DCVC)-induced injury. This study investigated the role of protein kinase C-alpha (PKC-alpha) in the lack of repair of mitochondrial function in DCVC-injured RPTC. After DCVC exposure, basal oxygen consumption (Qo(2)), uncoupled Qo(2), oligomycin-sensitive Qo(2), F(1)F(0)-ATPase activity, and ATP production decreased, respectively, to 59, 27, 27, 57, and 68% of controls. None of these functions recovered. Mitochondrial transmembrane potential decreased 53% after DCVC injury but recovered on day 4. PKC-alpha was activated 4.3- and 2.5-fold on days 2 and 4, respectively, of the recovery period. Inhibition of PKC-alpha activation (10 nM Go6976) did not block DCVC-induced decreases in mitochondrial functions but promoted the recovery of uncoupled Qo(2), oligomycin-sensitive Qo(2), F(1)F(0)-ATPase activity, and ATP production. Protein levels of the catalytic beta-subunit of F(1)F(0)-ATPase were not changed by DCVC or during the recovery period. Amino acid sequence analysis revealed that alpha-, beta-, and epsilon-subunits of F(1)F(0)-ATPase have PKC consensus motifs. Recombinant PKC-alpha phosphorylated the beta-subunit and decreased F(1)F(0)-ATPase activity in vitro. Serine but not threonine phosphorylation of the beta-subunit was increased during late recovery following DCVC injury, and inhibition of PKC-alpha activation decreased this phosphorylation. We conclude that during RPTC recovery following DCVC injury, 1). PKC-alpha activation decreases F(0)F(1)-ATPase activity, oxidative phosphorylation, and ATP production; 2). PKC-alpha phosphorylates the beta-subunit of F(1)F(0)-ATPase on serine residue; and 3). PKC-alpha does not mediate depolarization of RPTC mitochondria. This is the first report showing that PKC-alpha phosphorylates the catalytic subunit of F(1)F(0)-ATPase and that PKC-alpha plays an important role in regulating repair of mitochondrial function.[1]

References

 
WikiGenes - Universities