The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)

Human IL-23- producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria.

Macrophages (Mphi) play a central role as effector cells in immunity to intracellular pathogens such as Mycobacterium. Paradoxically, they also provide a habitat for intracellular bacterial survival. This paradoxical role of Mphi remains poorly understood. Here we report that this dual role may emanate from the functional plasticity of Mphi: Whereas Mphi-1 polarized in the presence of granulocyte-Mphi colony-stimulating factor promoted type 1 immunity, Mphi-2 polarized with Mphi colony-stimulating factor subverted type 1 immunity and thus may promote immune escape and chronic infection. Importantly, Mphi-1 secreted high levels of IL-23 (p40/ p19) but no IL-12 (p40/ p35) after (myco)bacterial activation. In contrast, activated Mphi-2 produced neither IL-23 nor IL-12 but predominantly secreted IL-10. Mphi-1 required IFN-gamma as a secondary signal to induce IL-12p35 gene transcription and IL-12 secretion. Activated dendritic cells produced both IL-12 and IL-23, but unlike Mphi-1 they slightly reduced their IL-23 secretion after addition of IFN-gamma. Binding, uptake, and outgrowth of a mycobacterial reporter strain was supported by both Mphi subsets, but more efficiently by Mphi-2 than Mphi-1. Whereas Mphi-1 efficiently stimulated type 1 helper cells, Mphi-2 only poorly supported type 1 helper function. Accordingly, activated Mphi-2 but not Mphi-1 down-modulated their antigen-presenting and costimulatory molecules (HLA-DR, CD86, and CD40). These findings indicate that (i) Mphi-1 and Mphi-2 play opposing roles in cellular immunity and (ii) IL-23 rather than IL-12 is the primary type 1 cytokine produced by activated proinflammatory Mphi-1. Mphi heterogeneity thus may be an important determinant of immunity and disease outcome in intracellular bacterial infection.[1]


  1. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Verreck, F.A., de Boer, T., Langenberg, D.M., Hoeve, M.A., Kramer, M., Vaisberg, E., Kastelein, R., Kolk, A., de Waal-Malefyt, R., Ottenhoff, T.H. Proc. Natl. Acad. Sci. U.S.A. (2004) [Pubmed]
WikiGenes - Universities