The world's first wiki where authorship really matters (Nature Genetics, 2008). Due credit and reputation for authors. Imagine a global collaborative knowledge base for original thoughts. Search thousands of articles and collaborate with scientists around the globe.

wikigene or wiki gene protein drug chemical gene disease author authorship tracking collaborative publishing evolutionary knowledge reputation system wiki2.0 global collaboration genes proteins drugs chemicals diseases compound
Hoffmann, R. A wiki for the life sciences where authorship matters. Nature Genetics (2008)
 
 
 

Chemistry of cyclic ADP-ribose and its analogs.

Cyclic ADP-ribose (cADPR), a general mediator involved in Ca2+ signaling, has the characteristic 18-membered ring consisting of an adenine, two riboses and a pyrophosphate, in which the two primary hydroxyl groups of the riboses are linked by a pyrophosphate unit. This review focuses on the chemical synthetic studies of cADPR analogs. These analogs have been used quite effectively in proving the mechanism of cADPR-mediated Ca2+ signaling pathways. These analogs are also expected to be lead structures for the development of drugs. Although cADPR analogs can be synthesized by enzymatic and chemo-enzymatic methods using ADP-ribosyl cyclase, the analogs obtained by these methods are limited due to the substrate-specificity of the enzymes. Consequently, chemical synthetic methods providing a greater variety of cADPR analogs are required. Chemical synthetic studies have demonstrated that the construction of the large 18-membered ring structure is quite difficult. Another problem encountered in the synthesis is the construction of the N1-substituted purine nucleoside structure. The N1-substituted inosine derivatives were prepared by condensation between the N1-(2,4-dinitrophenyl)inosine derivatives and the appropriate amines. For the preparation of the N1-substituted adenosine structures, condensation of the 4-cyano-5-(alkoxymethyleneamino)imidazole nucleosides with the appropriate amines was found to be effective. The first chemical construction of the 18-membered ring was achieved using a bisphosphate-type substrate conformationally restricted in the cyclized product-like syn-form around the N9-glycosyl linkage; however, the yield was inadequate. The key 18-membereding construction was significantly improved by employing the phenylthiophosphate-type substrates. When the substrates were activated by AgNO3 or I2 in the presence of molecular sieves in pyridine, the corresponding 18-membered ring products were obtained in high yields. Using this method as the key step, the chemically and biologically stable cADPR mimic, cADP-carbocyclic-ribose (cADPcR), was synthesized. This method has been applied subsequently to the synthesis of various cADPR analogs.[1]

References

  1. Chemistry of cyclic ADP-ribose and its analogs. Shuto, S., Matsuda, A. Current medicinal chemistry. (2004) [Pubmed]
 
WikiGenes - Universities